Tumor Segmentation and Classification Using Machine Learning Approaches
DOI:
https://doi.org/10.59461/ijdiic.v3i1.89Keywords:
Brain tumor, Pancreatic tumor, DBCWMF, HVR segmentation, CTSIFT extractionAbstract
Medical image processing has recently developed progressively in terms of methodologies and applications to increase serviceability in health care management. Modern medical image processing employs various methods to diagnose tumors due to the burgeoning demand in the related industry. This study uses the PG-DBCWMF, the HV area method, and CTSIFT extraction to identify brain tumors that have been combined with pancreatic tumors. In terms of efficiency, precision, creativity, and other factors, these strategies offer improved performance in therapeutic settings. The three techniques, PG-DBCWMF, HV region algorithm, and CTSIFT extraction, are combined in the suggested method. The PG-DBCWMF (Patch Group Decision Couple Window Median Filter) works well in the preprocessing stage and eliminates noise. The HV region technique precisely calculates the vertical and horizontal angles of the known images. CTSIFT is a feature extraction method that recognizes the area of tumor images that is impacted. The brain tumor and pancreatic tumor databases, which produce the best PNSR, MSE, and other results, were used for the experimental evaluation.
Downloads
References
L. Grady and G. Funka-Lea, “Multi-label Image Segmentation for Medical Applications Based on Graph-Theoretic Electrical Potentials,” 2004, pp. 230–245. doi: 10.1007/978-3-540-27816-0_20.
R. E. W. R.C. Gonzalez, Digital Image Processing, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 2022.
T. He and Z. Shi, “Conditionally Suboptimal Filtering in Nonlinear Stochastic Differential System,” Appl. Math., vol. 02, no. 06, pp. 757–763, 2011, doi: 10.4236/am.2011.26101.
Shuqun Zhang and M. A. Karim, “A new impulse detector for switching median filters,” IEEE Signal Process. Lett., vol. 9, no. 11, pp. 360–363, Nov. 2002, doi: 10.1109/LSP.2002.805310.
M. S. Nair and P. M. A. Mol, “Noise Adaptive Weighted Switching Median Filter for Removing High Density Impulse Noise,” 2011, pp. 193–204. doi: 10.1007/978-3-642-22720-2_19.
G. Pok and Jyh-Charn Liu, “Decision-based median filter improved by predictions,” in Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348), IEEE, 1999, pp. 410–413 vol.2. doi: 10.1109/ICIP.1999.822928.
K. Aiswarya, V. Jayaraj, and D. Ebenezer, “A New and Efficient Algorithm for the Removal of High Density Salt and Pepper Noise in Images and Videos,” in 2010 Second International Conference on Computer Modeling and Simulation, IEEE, Jan. 2010, pp. 409–413. doi: 10.1109/ICCMS.2010.310.
S. C, H. S A, and G. H L, “Artifact removal techniques for lung CT images in lung cancer detection,” Int. J. Data Informatics Intell. Comput., vol. 1, no. 1, pp. 21–29, Sep. 2022, doi: 10.59461/ijdiic.v1i1.14.
A. Chien, B. Dong, and Z. Shen, “Frame-based segmentation for medical images,” Commun. Math. Sci., vol. 9, no. 2, pp. 551–559, 2011, doi: 10.4310/CMS.2011.v9.n2.a10.
S. S. C. Bose, R. Natarajan, G. H L, F. Flammini, and P. V. Praveen Sundar, “Iterative Reflect Perceptual Sammon and Machine Learning-Based Bagging Classification for Efficient Tumor Detection,” Sustainability, vol. 15, no. 5, p. 4602, Mar. 2023, doi: 10.3390/su15054602.
A. Bal, M. Banerjee, A. Chakrabarti, and P. Sharma, “MRI Brain Tumor Segmentation and Analysis using Rough-Fuzzy C-Means and Shape Based Properties,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 2, pp. 115–133, Feb. 2022, doi: 10.1016/j.jksuci.2018.11.001.
E. Abdel-Maksoud, M. Elmogy, and R. Al-Awadi, “Brain tumor segmentation based on a hybrid clustering technique,” Egypt. Informatics J., vol. 16, no. 1, pp. 71–81, Mar. 2015, doi: 10.1016/j.eij.2015.01.003.
S. Rajendran et al., “Automated Segmentation of Brain Tumor MRI Images Using Deep Learning,” IEEE Access, vol. 11, pp. 64758–64768, 2023, doi: 10.1109/ACCESS.2023.3288017.
M. S. B. Dhumal and P. M. S. Tamboli, “Fuzzy Clustering Approach for Brain Tumor Detection,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 6, pp. 439–444, Jun. 2022, doi: 10.22214/ijraset.2022.43545.
Ashish Kumar Pandey and Prabhdeep Singh, “A Systematic Survey of Classification Algorithms for Cancer Detection,” Int. J. Data Informatics Intell. Comput., vol. 1, no. 2, pp. 34–50, Dec. 2022, doi: 10.59461/ijdiic.v1i2.32.
P. Msaouel, N. Pissimissis, A. Halapas, and M. Koutsilieris, “Mechanisms of bone metastasis in prostate cancer: clinical implications,” Best Pract. Res. Clin. Endocrinol. Metab., vol. 22, no. 2, pp. 341–355, Apr. 2008, doi: 10.1016/j.beem.2008.01.011.
P. Somani, S. Kumar Vohra, S. Chowdhury, and S. Kant Gupta, “Implementation of a Blockchain-based Smart Shopping System for Automated Bill Generation Using Smart Carts with Cryptographic Algorithms,” in The Data-Driven Blockchain Ecosystem, Boca Raton: CRC Press, 2022, pp. 155–168. doi: 10.1201/9781003269281-11.
S. Chaturvedi, “Iot-Based Secure Healthcare Framework Using Blockchain Technology with A Novel Simplified Swarm-Optimized Bayesian Normalized Neural Networks,” Int. J. Data Informatics Intell. Comput., vol. 2, no. 2, pp. 63–71, Jun. 2023, doi: 10.59461/ijdiic.v2i2.59.
A. M. Younus, M. S. S. Abumandil, V. P. Gangwar, and S. K. Gupta, “AI-Based Smart Education System for a Smart City Using an Improved Self-Adaptive Leap-Frogging Algorithm,” in AI-Centric Smart City Ecosystems, Boca Raton: CRC Press, 2022, pp. 231–245. doi: 10.1201/9781003252542-14.
J. Rosak-Szyrocka, J. Żywiołek, and M. Shahbaz, Quality Management, Value Creation, and the Digital Economy. London: Routledge, 2023. doi: 10.4324/9781003404682.
R. Natarajan, G. H. Lokesh, F. Flammini, A. Premkumar, V. K. Venkatesan, and S. K. Gupta, “A Novel Framework on Security and Energy Enhancement Based on Internet of Medical Things for Healthcare 5.0,” Infrastructures, vol. 8, no. 2, p. 22, Feb. 2023, doi: 10.3390/infrastructures8020022.
B. van Ginneken, A. A. A. Setio, C. Jacobs, and F. Ciompi, “Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans,” in 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), IEEE, Apr. 2015, pp. 286–289. doi: 10.1109/ISBI.2015.7163869.
M. Firmino, A. H. Morais, R. M. Mendoça, M. R. Dantas, H. R. Hekis, and R. Valentim, “Computer-aided detection system for lung cancer in computed tomography scans: Review and future prospects,” Biomed. Eng. Online, vol. 13, no. 1, p. 41, 2014, doi: 10.1186/1475-925X-13-41.
H. D. Cheng, X. Cai, X. Chen, L. Hu, and X. Lou, “Computer-aided detection and classification of microcalcifications in mammograms: a survey,” Pattern Recognit., vol. 36, no. 12, pp. 2967–2991, Dec. 2003, doi: 10.1016/S0031-3203(03)00192-4.
N. Jones, “Computer science: The learning machines,” nature, vol. 505, no. 7482, pp. 146–148, Jan. 2014, doi: 10.1038/505146a.
A. Shah et al., “Automated image segmentation of scanning electron microscopy images of graphene using U-Net Neural Network,” Mater. Today Commun., vol. 35, p. 106127, Jun. 2023, doi: 10.1016/j.mtcomm.2023.106127.
D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks,” 2013, pp. 411–418. doi: 10.1007/978-3-642-40763-5_51.
A. Prasoon, K. Petersen, C. Igel, F. Lauze, E. Dam, and M. Nielsen, “Deep Feature Learning for Knee Cartilage Segmentation Using a Triplanar Convolutional Neural Network,” 2013, pp. 246–253. doi: 10.1007/978-3-642-40763-5_31.
H. R. Roth et al., “A New 2.5D Representation for Lymph Node Detection Using Random Sets of Deep Convolutional Neural Network Observations,” 2014, pp. 520–527. doi: 10.1007/978-3-319-10404-1_65.
H. R. Roth, J. Yao, L. Lu, J. Stieger, J. E. Burns, and R. M. Summers, “Detection of Sclerotic Spine Metastases via Random Aggregation of Deep Convolutional Neural Network Classifications,” 2015, pp. 3–12. doi: 10.1007/978-3-319-14148-0_1.
Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Medical image classification with convolutional neural network,” in 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), IEEE, Dec. 2014, pp. 844–848. doi: 10.1109/ICARCV.2014.7064414.
L. S. M. and G. V.K., “Convolutional Neural Network Based Segmentation,” 2011, pp. 190–197. doi: 10.1007/978-3-642-22786-8_23.
M. A. Wani and B. G. Batchelor, “Edge-region-based segmentation of range images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 3, pp. 314–319, Mar. 1994, doi: 10.1109/34.276131.
Jun Tang, “A color image segmentation algorithm based on region growing,” in 2010 2nd International Conference on Computer Engineering and Technology, IEEE, 2010, pp. V6-634-V6-637. doi: 10.1109/ICCET.2010.5486012.
S. Angelina., L. P. Suresh, and S. H. K. Veni, “Image segmentation based on genetic algorithm for region growth and region merging,” in 2012 International Conference on Computing, Electronics and Electrical Technologies (ICCEET), IEEE, Mar. 2012, pp. 970–974. doi: 10.1109/ICCEET.2012.6203833.
L. Garcia Ugarriza, E. Saber, S. R. Vantaram, V. Amuso, M. Shaw, and R. Bhaskar, “Automatic Image Segmentation by Dynamic Region Growth and Multiresolution Merging,” IEEE Trans. Image Process., vol. 18, no. 10, pp. 2275–2288, Oct. 2009, doi: 10.1109/TIP.2009.2025555.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Thanh Chi Phan, Le Thanh Hieu

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.