Analysis Role of ML and Big Data Play in Driving Digital Marketing's Paradigm Shift
DOI:
https://doi.org/10.59461/ijdiic.v2i3.75Keywords:
Machine Learning, Bigdata, Data Analytics , Paradigms , Driving digital marketingAbstract
Marketing strategies are being revolutionized by the development of user data and the expanding usability of Machine Learning (ML) as well as Big Data approaches. The wide variety of options that ML and Big Data applications provide in building and sustaining a competitive corporate edge are not fully understood by researchers and marketers. Based on a thorough analysis of academic and commercial literature, we offer a classification of ML and Big Data use cases in marketing in this article. In order to effectively employ ML and Big Data in marketing, we have discovered 11 recurrent use cases that are grouped into 4 homogenous families. These families are: fundamentals of the consumer, the consumer experience, decision-making, and financial impact. We go over the taxonomy's repeating patterns and offer a conceptual framework for understanding and extending it, emphasizing the practical ramifications for marketers and academics.
Downloads
References
A. Aakash and A. Gupta Aggarwal, “Assessment of Hotel Performance and Guest Satisfaction through eWOM: Big Data for Better Insights,” Int. J. Hosp. Tour. Adm., vol. 23, no. 2, pp. 317–346, Mar. 2022, doi: 10.1080/15256480.2020.1746218.
R. A. Peter Weill, “The Benefits of Combining Data With Empathy,” MIT Sloan Manag. Rev., 2012.
M. M. Alani, “Big data in cybersecurity: a survey of applications and future trends,” J. Reliab. Intell. Environ., vol. 7, no. 2, pp. 85–114, Jun. 2021, doi: 10.1007/s40860-020-00120-3.
A. Amado, P. Cortez, P. Rita, and S. Moro, “Research trends on Big Data in Marketing: A text mining and topic modeling based literature analysis,” Eur. Res. Manag. Bus. Econ., vol. 24, no. 1, pp. 1–7, Jan. 2018, doi: 10.1016/j.iedeen.2017.06.002.
B. Balducci and D. Marinova, “Unstructured data in marketing,” J. Acad. Mark. Sci., vol. 46, no. 4, pp. 557–590, Jul. 2018, doi: 10.1007/s11747-018-0581-x.
P. V. Kumaraguru, V. Kamalakkannan, G. H L, F. Flammini, B. Sulaiman Alfurhood, and R. Natarajan, “Hessian Distributed Ant Optimized Perron–Frobenius Eigen Centrality for Social Networks,” ISPRS Int. J. Geo-Information, vol. 12, no. 8, p. 316, Aug. 2023, doi: 10.3390/ijgi12080316.
V. S. Kumar, “A Big Data Analytical Framework for Intrusion Detection Based On Novel Elephant Herding Optimized Finite Dirichlet Mixture Models,” Int. J. Data Informatics Intell. Comput., vol. 2, no. 2, pp. 11–20, Jun. 2023, doi: 10.59461/ijdiic.v2i2.58.
F.-Z. Benjelloun, A. A. Lahcen, and S. Belfkih, “An overview of big data opportunities, applications and tools,” in 2015 Intelligent Systems and Computer Vision (ISCV), IEEE, Mar. 2015, pp. 1–6. doi: 10.1109/ISACV.2015.7105553.
D. F. Benoit, S. Lessmann, and W. Verbeke, “On realising the utopian potential of big data analytics for maximising return on marketing investments,” J. Mark. Manag., vol. 36, no. 3–4, pp. 233–247, Feb. 2020, doi: 10.1080/0267257X.2020.1739446.
D. Blazquez and J. Domenech, “Big Data sources and methods for social and economic analyses,” Technol. Forecast. Soc. Change, vol. 130, pp. 99–113, May 2018, doi: 10.1016/j.techfore.2017.07.027.
K. Nagorny, P. Lima-Monteiro, J. Barata, and A. W. Colombo, “Big Data Analysis in Smart Manufacturing: A Review,” Int. J. Commun. Netw. Syst. Sci., vol. 10, no. 03, pp. 31–58, 2017, doi: 10.4236/ijcns.2017.103003.
D. Buhalis and K. Volchek, “Bridging marketing theory and big data analytics: The taxonomy of marketing attribution,” Int. J. Inf. Manage., vol. 56, p. 102253, Feb. 2021, doi: 10.1016/j.ijinfomgt.2020.102253.
M. A. Camilleri, “The use of data-driven technologies for customer-centric marketing,” Int. J. Big Data Manag., vol. 1, no. 1, p. 50, 2020, doi: 10.1504/IJBDM.2020.106876.
F. Cappa, R. Oriani, E. Peruffo, and I. McCarthy, “Big Data for Creating and Capturing Value in the Digitalized Environment: Unpacking the Effects of Volume, Variety, and Veracity on Firm Performance*,” J. Prod. Innov. Manag., vol. 38, no. 1, pp. 49–67, Jan. 2021, doi: 10.1111/jpim.12545.
C. L. Philip Chen and C.-Y. Zhang, “Data-intensive applications, challenges, techniques and technologies: A survey on Big Data,” Inf. Sci. (Ny)., vol. 275, pp. 314–347, Aug. 2014, doi: 10.1016/j.ins.2014.01.015.
Chen, Chiang, and Storey, “Business Intelligence and Analytics: From Big Data to Big Impact,” MIS Q., vol. 36, no. 4, p. 1165, 2012, doi: 10.2307/41703503.
N. Côrte-Real, T. Oliveira, and P. Ruivo, “Assessing business value of Big Data Analytics in European firms,” J. Bus. Res., vol. 70, pp. 379–390, Jan. 2017, doi: 10.1016/j.jbusres.2016.08.011.
Aviral Srivastava and V Vineeth Kumar, “ML based approach for covid-19 future forecasting,” Int. J. Data Informatics Intell. Comput., vol. 1, no. 2, pp. 8–15, Dec. 2022, doi: 10.59461/ijdiic.v1i2.15.
Manju Bargavi, M.Senbagavalli, Tejashwini.K.R, and Tejashvar.K.R, “Data Breach – Its Effects on Industry,” Int. J. Data Informatics Intell. Comput., vol. 1, no. 2, pp. 51–57, Dec. 2022, doi: 10.59461/ijdiic.v1i2.31.
L. Duan and Y. Xiong, “Big data analytics and business analytics,” J. Manag. Anal., vol. 2, no. 1, pp. 1–21, Jan. 2015, doi: 10.1080/23270012.2015.1020891.
P. Ducange, R. Pecori, and P. Mezzina, “A glimpse on big data analytics in the framework of marketing strategies,” Soft Comput., vol. 22, no. 1, pp. 325–342, Jan. 2018, doi: 10.1007/s00500-017-2536-4.
A. C. Eberendu, “Unstructured Data: an overview of the data of Big Data,” Int. J. Comput. Trends Technol., vol. 38, no. 1, pp. 46–50, Aug. 2016, doi: 10.14445/22312803/IJCTT-V38P109.
S. Erevelles, N. Fukawa, and L. Swayne, “Big Data consumer analytics and the transformation of marketing,” J. Bus. Res., vol. 69, no. 2, pp. 897–904, Feb. 2016, doi: 10.1016/j.jbusres.2015.07.001.
H. Fu, G. Manogaran, K. Wu, M. Cao, S. Jiang, and A. Yang, “Intelligent decision-making of online shopping behavior based on internet of things,” Int. J. Inf. Manage., vol. 50, pp. 515–525, Feb. 2020, doi: 10.1016/j.ijinfomgt.2019.03.010.
J. R. Galbraith, “Organizational Design Challenges Resulting From Big Data,” J. Organ. Des., vol. 3, no. 1, p. 2, Apr. 2014, doi: 10.7146/jod.8856.
A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, methods, and analytics,” Int. J. Inf. Manage., vol. 35, no. 2, pp. 137–144, Apr. 2015, doi: 10.1016/j.ijinfomgt.2014.10.007.
F. Germann, G. L. Lilien, L. Fiedler, and M. Kraus, “Do Retailers Benefit from Deploying Customer Analytics?,” J. Retail., vol. 90, no. 4, pp. 587–593, Dec. 2014, doi: 10.1016/j.jretai.2014.08.002.
A. Ghose and V. Todri-Adamopoulos, “Toward a Digital Attribution Model: Measuring the Impact of Display Advertising on Online Consumer Behavior,” MIS Q., vol. 40, no. 4, pp. 889–910, Apr. 2016, doi: 10.25300/MISQ/2016/40.4.05.
K. Gillon, S. Aral, C.-Y. Lin, S. Mithas, and M. Zozulia, “Business Analytics: Radical Shift or Incremental Change?,” Commun. Assoc. Inf. Syst., vol. 34, 2014, doi: 10.17705/1CAIS.03413.
K. Grishikashvili, S. Dibb, and M. Meadows, “Investigation into Big Data Impact on Digital Marketing,” Online J. Commun. Media Technol., vol. 4, no. October 2014-Special Issue, pp. 26–37, Oct. 2014, doi: 10.30935/ojcmt/5702.
J. F. Hair and M. Sarstedt, “Data, measurement, and causal inferences in machine learning: opportunities and challenges for marketing,” J. Mark. Theory Pract., vol. 29, no. 1, pp. 65–77, Jan. 2021, doi: 10.1080/10696679.2020.1860683.
P. Harrigan, T. M. Daly, K. Coussement, J. A. Lee, G. N. Soutar, and U. Evers, “Identifying influencers on social media,” Int. J. Inf. Manage., vol. 56, p. 102246, Feb. 2021, doi: 10.1016/j.ijinfomgt.2020.102246.
A. M. Hayashi, “Thriving in a big data world,” MIT Sloan Manag. Rev., vol. 55(2), 35, 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ashish Kumar Pandey

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.