Enhancing Performance of Hybrid Electric Vehicle using Optimized Energy Management Methodology
DOI:
https://doi.org/10.59461/ijdiic.v2i3.74Keywords:
ANFIS, ECMS, Hybrid electric vehicle, Haar wavelet transform , Hydrogen consumption, Power management scheme , System efficiencyAbstract
The fuel consumption and the fuel management strategy (PMS) of the hybrid electric vehicle are closely linked (HEV). In this study, a hybrid power management technique and an adaptive neuro-fuzzy inference (ANFIS) method are established. Artificial intelligence represents a huge improvement in electricity management across different energy sources (AI). The main energy source of the hybrid power supply is a proton exchange membrane fuel cell (PEMFC), while its electrical storage devices are a battery bank and an ultracapacitor. The hybrid electric vehicle's power management strategy (PMS) and fuel consumption are closely related (HEV). In this paper, an adaptive neuro-fuzzy inference and hybrid power management strategy (ANFIS) approach is developed. A significant advance in electricity management across multiple energy sources is artificial intelligence (AI). The proton exchange membrane fuel cell (PEMFC) serves as the primary energy source of the hybrid power supply, and the ultracapacitor and battery bank serve as its electrical storage components.
Downloads
References
F. Zhang, L. Wang, S. Coskun, H. Pang, Y. Cui, and J. Xi, “Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook,” Energies, vol. 13, no. 13, p. 3352, Jun. 2020, doi: 10.3390/en13133352.
P. Duhr, G. Christodoulou, C. Balerna, M. Salazar, A. Cerofolini, and C. H. Onder, “Time-optimal gearshift and energy management strategies for a hybrid electric race car,” Appl. Energy, vol. 282, p. 115980, Jan. 2021, doi: 10.1016/j.apenergy.2020.115980.
N. Guo, X. Zhang, Y. Zou, L. Guo, and G. Du, “Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation,” Energy, vol. 214, p. 119070, Jan. 2021, doi: 10.1016/j.energy.2020.119070.
Q. Li, W. Chen, S. Liu, Z. You, S. Tao, and Y. Li, “Power management strategy based on adaptive neuro-fuzzy inference system for fuel cell-battery hybrid vehicle,” J. Renew. Sustain. Energy, vol. 4, no. 1, Jan. 2012, doi: 10.1063/1.3682057.
A. H. Yousef Allahvirdizadeh, Mustafa Mohamadian, Mahmoud-Reza HaghiFam, “Optimization of a Fuzzy Based Energy Management Strategy for a PV/WT/FC Hybrid,” Int. J. Renew. Energy Res., no. v7i4, 2017, doi: 10.20508/ijrer.v7i4.6233.g7210.
H. A. Yavasoglu, Y. E. Tetik, and H. G. Ozcan, “Neural network‐based energy management of multi‐source (battery/UC/FC) powered electric vehicle,” Int. J. Energy Res., vol. 44, no. 15, pp. 12416–12429, Dec. 2020, doi: 10.1002/er.5429.
M. Montazeri-Gh and Z. Pourbafarani, “Near-Optimal SOC Trajectory for Traffic-Based Adaptive PHEV Control Strategy,” IEEE Trans. Veh. Technol., vol. 66, no. 11, pp. 9753–9760, Nov. 2017, doi: 10.1109/TVT.2017.2757604.
K. V. Singh, H. O. Bansal, and D. Singh, “Development of an adaptive neuro‐fuzzy inference system–based equivalent consumption minimisation strategy to improve fuel economy in hybrid electric vehicles,” IET Electr. Syst. Transp., vol. 11, no. 3, pp. 171–185, Sep. 2021, doi: 10.1049/els2.12020.
M. Suhail, I. Akhtar, S. Kirmani, and M. Jameel, “Development of Progressive Fuzzy Logic and ANFIS Control for Energy Management of Plug-In Hybrid Electric Vehicle,” IEEE Access, vol. 9, pp. 62219–62231, 2021, doi: 10.1109/ACCESS.2021.3073862.
A. A. Kamel, H. Rezk, and M. A. Abdelkareem, “Enhancing the operation of fuel cell-photovoltaic-battery-supercapacitor renewable system through a hybrid energy management strategy,” Int. J. Hydrogen Energy, vol. 46, no. 8, pp. 6061–6075, Jan. 2021, doi: 10.1016/j.ijhydene.2020.06.052.
Z. Song, H. Hofmann, J. Li, J. Hou, X. Han, and M. Ouyang, “Energy management strategies comparison for electric vehicles with hybrid energy storage system,” Appl. Energy, vol. 134, pp. 321–331, Dec. 2014, doi: 10.1016/j.apenergy.2014.08.035.
M. Gaber, S. El-Banna, M. El-Dabah, and O. Hamad, “Designing and Implementation of an Intelligent Energy Management System for Electric Ship power system based on Adaptive Neuro-Fuzzy Inference System (ANFIS),” Adv. Sci. Technol. Eng. Syst. J., vol. 6, no. 2, pp. 195–203, Mar. 2021, doi: 10.25046/aj060223.
X. Tian, R. He, and Y. Xu, “Design of an Energy Management Strategy for a Parallel Hybrid Electric Bus Based on an IDP-ANFIS Scheme,” IEEE Access, vol. 6, pp. 23806–23819, 2018, doi: 10.1109/ACCESS.2018.2829701.
N. Ding, K. Prasad, and T. T. Lie, “Design of a hybrid energy management system using designed rule‐based control strategy and genetic algorithm for the series‐parallel plug‐in hybrid electric vehicle,” Int. J. Energy Res., vol. 45, no. 2, pp. 1627–1644, Feb. 2021, doi: 10.1002/er.5808.
R. Natarajan, S. R. P, S. C. Bose, H. L. Gururaj, F. Flammini, and S. Velmurugan, “Fault detection and state estimation in robotic automatic control using machine learning,” Array, vol. 19, p. 100298, Sep. 2023, doi: 10.1016/j.array.2023.100298.
I. U. Khan and Naga Lakshmi Sowjanya Cherukupalli, “Research on the analytics of traffic pumping in telecommunications via data science using rehabilitated frog leaping algorithm,” Int. J. Data Informatics Intell. Comput., vol. 2, no. 1, pp. 51–61, Mar. 2023, doi: 10.59461/ijdiic.v2i1.46.
C. H. Cai, D. Du, and Z. Y. Liu, “Battery state-of-charge (SOC) estimation using adaptive neuro-fuzzy inference system (ANFIS),” in The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ ’03., IEEE, pp. 1068–1073. doi: 10.1109/FUZZ.2003.1206580.
R. B. Shaik and E. V. Kannappan, “Application of Adaptive Neuro-Fuzzy Inference Rule-based Controller in Hybrid Electric Vehicles,” J. Electr. Eng. Technol., vol. 15, no. 5, pp. 1937–1945, Sep. 2020, doi: 10.1007/s42835-020-00459-w.
P. Li, X. Jiao, and Y. Li, “Adaptive real-time energy management control strategy based on fuzzy inference system for plug-in hybrid electric vehicles,” Control Eng. Pract., vol. 107, p. 104703, Feb. 2021, doi: 10.1016/j.conengprac.2020.104703.
D. Karaboga and E. Kaya, “Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey,” Artif. Intell. Rev., vol. 52, no. 4, pp. 2263–2293, Dec. 2019, doi: 10.1007/s10462-017-9610-2.
F. Zhang, X. Hu, R. Langari, L. Wang, Y. Cui, and H. Pang, “Adaptive energy management in automated hybrid electric vehicles with flexible torque request,” Energy, vol. 214, p. 118873, Jan. 2021, doi: 10.1016/j.energy.2020.118873.
L. Zhang, X. Ye, X. Xia, and F. Barzegar, “A Real-Time Energy Management and Speed Controller for an Electric Vehicle Powered by a Hybrid Energy Storage System,” IEEE Trans. Ind. Informatics, vol. 16, no. 10, pp. 6272–6280, Oct. 2020, doi: 10.1109/TII.2020.2964389.
Q. Zhang and G. Li, “A predictive energy management system for hybrid energy storage systems in electric vehicles,” Electr. Eng., vol. 101, no. 3, pp. 759–770, Sep. 2019, doi: 10.1007/s00202-019-00822-9.
Q. Zhang and X. Fu, “A Neural Network Fuzzy Energy Management Strategy for Hybrid Electric Vehicles Based on Driving Cycle Recognition,” Appl. Sci., vol. 10, no. 2, p. 696, Jan. 2020, doi: 10.3390/app10020696.
M. Wieczorek and M. Lewandowski, “A mathematical representation of an energy management strategy for hybrid energy storage system in electric vehicle and real time optimization using a genetic algorithm,” Appl. Energy, vol. 192, pp. 222–233, Apr. 2017, doi: 10.1016/j.apenergy.2017.02.022.
M. Liang, B. Luo, and L. Zhi, “Application of graphene and graphene-based materials in clean energy-related devices,” Int. J. Energy Res., vol. 33, no. 13, pp. 1161–1170, Oct. 2009, doi: 10.1002/er.1598.
G. F. Gomes, S. S. da Cunha, and A. C. Ancelotti, “A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates,” Eng. Comput., vol. 35, no. 2, pp. 619–626, Apr. 2019, doi: 10.1007/s00366-018-0620-8.
S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili, “Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems,” Adv. Eng. Softw., vol. 114, pp. 163–191, Dec. 2017, doi: 10.1016/j.advengsoft.2017.07.002.
S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, “Multi-Verse Optimizer: a nature-inspired algorithm for global optimization,” Neural Comput. Appl., vol. 27, no. 2, pp. 495–513, Feb. 2016, doi: 10.1007/s00521-015-1870-7.
S. Saremi, S. Mirjalili, and A. Lewis, “Grasshopper Optimisation Algorithm: Theory and application,” Adv. Eng. Softw., vol. 105, pp. 30–47, Mar. 2017, doi: 10.1016/j.advengsoft.2017.01.004.
S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, Mar. 2014, doi: 10.1016/j.advengsoft.2013.12.007.
H. Rezk et al., “A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system,” Renew. Sustain. Energy Rev., vol. 115, p. 109372, Nov. 2019, doi: 10.1016/j.rser.2019.109372.
O. Abdalla, H. Rezk, and E. M. Ahmed, “Wind driven optimization algorithm based global MPPT for PV system under non-uniform solar irradiance,” Sol. Energy, vol. 180, pp. 429–444, Mar. 2019, doi: 10.1016/j.solener.2019.01.056.
M. Tolba, H. Rezk, A. A. Z. Diab, and M. Al-Dhaifallah, “A Novel Robust Methodology Based Salp Swarm Algorithm for Allocation and Capacity of Renewable Distributed Generators on Distribution Grids,” Energies, vol. 11, no. 10, p. 2556, Sep. 2018, doi: 10.3390/en11102556.
N. Yadav, A. Yadav, J. C. Bansal, K. Deep, and J. H. Kim, Eds., Harmony Search and Nature Inspired Optimization Algorithms, vol. 741. in Advances in Intelligent Systems and Computing, vol. 741. Singapore: Springer Singapore, 2019. doi: 10.1007/978-981-13-0761-4.
S. Mirjalili, “Particle Swarm Optimisation,” 2019, pp. 15–31. doi: 10.1007/978-3-319-93025-1_2.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Prabhdeep Singh

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.