Consideration of Data Security and Privacy Using Machine Learning Techniques
DOI:
https://doi.org/10.59461/ijdiic.v2i4.90Keywords:
Machine learning , Security, Cryptography, Privacy-preserving data protocolAbstract
As artificial intelligence becomes more and more prevalent, machine learning algorithms are being used in a wider range of domains. Big data and processing power, which are typically gathered via crowdsourcing and acquired online, are essential for the effectiveness of machine learning. Sensitive and private data, such as ID numbers, personal mobile phone numbers, and medical records, are frequently included in the data acquired for machine learning training. A significant issue is how to effectively and cheaply protect sensitive private data. With this type of issue in mind, this article first discusses the privacy dilemma in machine learning and how it might be exploited before summarizing the features and techniques for protecting privacy in machine learning algorithms. Next, the combination of a network of convolutional neural networks and a different secure privacy approach is suggested to improve the accuracy of classification of the various algorithms that employ noise to safeguard privacy. This approach can acquire each layer's privacy budget of a neural network and completely incorporates the properties of Gaussian distribution and difference. Lastly, the Gaussian noise scale is set, and the sensitive information in the data is preserved by using the gradient value of a stochastic gradient descent technique. The experimental results showed that a balance of better accuracy of 99.05% between the accessibility and privacy protection of the training data set could be achieved by modifying the depth differential privacy model's parameters depending on variations in private information in the data.
Downloads
References
D. Wang, J. Zhao, and Y. Wang, “A Survey on Privacy Protection of Blockchain: The Technology and Application,” IEEE Access, vol. 8, pp. 108766–108781, 2020, doi: 10.1109/ACCESS.2020.2994294.
B. A. Malin, “An Evaluation of the Current State of Genomic Data Privacy Protection Technology and a Roadmap for the Future,” J. Am. Med. Informatics Assoc., vol. 12, no. 1, pp. 28–34, Oct. 2004, doi: 10.1197/jamia.M1603.
A. R. Miller and C. Tucker, “Privacy Protection and Technology Diffusion: The Case of Electronic Medical Records,” Manage. Sci., vol. 55, no. 7, pp. 1077–1093, Jul. 2009, doi: 10.1287/mnsc.1090.1014.
C. Bettini and D. Riboni, “Privacy protection in pervasive systems: State of the art and technical challenges,” Pervasive Mob. Comput., vol. 17, pp. 159–174, Feb. 2015, doi: 10.1016/j.pmcj.2014.09.010.
R. Gupta, S. Tanwar, F. Al-Turjman, P. Italiya, A. Nauman, and S. W. Kim, “Smart Contract Privacy Protection Using AI in Cyber-Physical Systems: Tools, Techniques and Challenges,” IEEE Access, vol. 8, pp. 24746–24772, 2020, doi: 10.1109/ACCESS.2020.2970576.
C. Yin, J. Xi, R. Sun, and J. Wang, “Location Privacy Protection Based on Differential Privacy Strategy for Big Data in Industrial Internet of Things,” IEEE Trans. Ind. Informatics, vol. 14, no. 8, pp. 3628–3636, Aug. 2018, doi: 10.1109/TII.2017.2773646.
B. Claerhout and G. J. E. DeMoor, “Privacy protection for clinical and genomic data,” Int. J. Med. Inform., vol. 74, no. 2–4, pp. 257–265, Mar. 2005, doi: 10.1016/j.ijmedinf.2004.03.008.
Q. Feng, D. He, S. Zeadally, M. K. Khan, and N. Kumar, “A survey on privacy protection in blockchain system,” J. Netw. Comput. Appl., vol. 126, pp. 45–58, Jan. 2019, doi: 10.1016/j.jnca.2018.10.020.
H.-T. Wu and C.-W. Tsai, “Toward Blockchains for Health-Care Systems: Applying the Bilinear Pairing Technology to Ensure Privacy Protection and Accuracy in Data Sharing,” IEEE Consum. Electron. Mag., vol. 7, no. 4, pp. 65–71, Jul. 2018, doi: 10.1109/MCE.2018.2816306.
C. Yin, L. Shi, R. Sun, and J. Wang, “Improved collaborative filtering recommendation algorithm based on differential privacy protection,” J. Supercomput., vol. 76, no. 7, pp. 5161–5174, Jul. 2020, doi: 10.1007/s11227-019-02751-7.
P. C. Mahawaga Arachchige, P. Bertok, I. Khalil, D. Liu, S. Camtepe, and M. Atiquzzaman, “Local Differential Privacy for Deep Learning,” IEEE Internet Things J., vol. 7, no. 7, pp. 5827–5842, Jul. 2020, doi: 10.1109/JIOT.2019.2952146.
I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-based malware detection system for android,” in Proceedings of the ACM Conference on Computer and Communications Security, New York, NY, USA: ACM, Oct. 2011, pp. 15–25. doi: 10.1145/2046614.2046619.
A. Abdellatif, M. Wessel, I. Steinmacher, M. A. Gerosa, and E. Shihab, “BotHunter:an approach to detect software bots in GitHub,” in Proceedings of the 19th International Conference on Mining Software Repositories, New York, NY, USA: ACM, May 2022, pp. 6–17. doi: 10.1145/3524842.3527959.
K. Owusu-Agyemeng, Z. Qin, H. Xiong, Y. Liu, T. Zhuang, and Z. Qin, “MSDP: multi-scheme privacy-preserving deep learning via differential privacy,” Pers. Ubiquitous Comput., vol. 27, no. 2, pp. 221–233, Apr. 2023, doi: 10.1007/s00779-021-01545-0.
N. Rajesh and A. A. L. Selvakumar, “Association rules and deep learning for cryptographic algorithm in privacy preserving data mining,” Cluster Comput., vol. 22, no. S1, pp. 119–131, Jan. 2019, doi: 10.1007/s10586-018-1827-6.
R. Natarajan, G. H. Lokesh, F. Flammini, A. Premkumar, V. K. Venkatesan, and S. K. Gupta, “A Novel Framework on Security and Energy Enhancement Based on Internet of Medical Things for Healthcare 5.0,” Infrastructures, vol. 8, no. 2, p. 22, Feb. 2023, doi: 10.3390/infrastructures8020022.
K. I. Jones and S. R, “Information Security: A Coordinated Strategy to Guarantee Data Security in Cloud Computing,” Int. J. Data Informatics Intell. Comput., vol. 2, no. 1, pp. 11–31, Mar. 2023, doi: 10.59461/ijdiic.v2i1.34.
Prabhdeep Singh and Ashish Kumar Pandey, “A Review on Cloud Data Security Challenges and existing Countermeasures in Cloud Computing,” Int. J. Data Informatics Intell. Comput., vol. 1, no. 2, pp. 23–33, Dec. 2022, doi: 10.59461/ijdiic.v1i2.33.
N. Rajesh and A. A. L. Selvakumar, “Hiding personalised anonymity of attributes using privacy preserving data mining,” Int. J. Adv. Intell. Paradig., vol. 7, no. 3/4, p. 394, 2015, doi: 10.1504/IJAIP.2015.073717.
W. Wang, L. Ying, and J. Zhang, “On the Relation Between Identifiability, Differential Privacy, and Mutual-Information Privacy,” IEEE Trans. Inf. Theory, vol. 62, no. 9, pp. 5018–5029, Sep. 2016, doi: 10.1109/TIT.2016.2584610.
J. Pei, K. Zhong, M. A. Jan, and J. Li, “RETRACTED: Personalized federated learning framework for network traffic anomaly detection,” Comput. Networks, vol. 209, p. 108906, May 2022, doi: 10.1016/j.comnet.2022.108906.
G. K. Ragesh and A. Kumar, “Trust-based secure routing and message delivery protocol for signal processing attacks in IoT applications,” J. Supercomput., vol. 79, no. 3, pp. 2882–2909, Feb. 2023, doi: 10.1007/s11227-022-04766-z.
A. Al Hayajneh, M. Z. A. Bhuiyan, and I. McAndrew, “Improving Internet of Things (IoT) Security with Software-Defined Networking (SDN),” Computers, vol. 9, no. 1, p. 8, Feb. 2020, doi: 10.3390/computers9010008.
B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, “A survey of intrusion detection in Internet of Things,” J. Netw. Comput. Appl., vol. 84, pp. 25–37, Apr. 2017, doi: 10.1016/j.jnca.2017.02.009.
J. Qiu, Z. Tian, C. Du, Q. Zuo, S. Su, and B. Fang, “A Survey on Access Control in the Age of Internet of Things,” IEEE Internet Things J., vol. 7, no. 6, pp. 4682–4696, Jun. 2020, doi: 10.1109/JIOT.2020.2969326.
Dr. S. Smys, Dr. Abul Basar, and Dr. Haoxiang Wang, “Hybrid Intrusion Detection System for Internet of Things (IoT),” J. ISMAC, vol. 2, no. 4, pp. 190–199, Sep. 2020, doi: 10.36548/jismac.2020.4.002.
T. Saba, A. Rehman, T. Sadad, H. Kolivand, and S. A. Bahaj, “Anomaly-based intrusion detection system for IoT networks through deep learning model,” Comput. Electr. Eng., vol. 99, p. 107810, Apr. 2022, doi: 10.1016/j.compeleceng.2022.107810.
A. Fatani, A. Dahou, M. A. A. Al-qaness, S. Lu, and M. A. Abd Elaziz, “Advanced Feature Extraction and Selection Approach Using Deep Learning and Aquila Optimizer for IoT Intrusion Detection System,” Sensors, vol. 22, no. 1, p. 140, Dec. 2021, doi: 10.3390/s22010140.
P. Khadivi, T. D. Todd, S. Samavi, H. Saidi, and D. Zhao, “Mobile ad hoc relaying for upward vertical handoff in hybrid WLAN/cellular systems,” Ad Hoc Networks, vol. 6, no. 2, pp. 307–324, Apr. 2008, doi: 10.1016/j.adhoc.2007.01.005.
E. M. Rudd, A. Rozsa, M. Gunther, and T. E. Boult, “A Survey of Stealth Malware Attacks, Mitigation Measures, and Steps Toward Autonomous Open World Solutions,” IEEE Commun. Surv. Tutorials, vol. 19, no. 2, pp. 1145–1172, 2017, doi: 10.1109/COMST.2016.2636078.
K. N. Khasawneh, M. Ozsoy, C. Donovick, N. Abu-Ghazaleh, and D. Ponomarev, “Ensemble Learning for Low-Level Hardware-Supported Malware Detection,” 2015, pp. 3–25. doi: 10.1007/978-3-319-26362-5_1.
M. B. Bahador, M. Abadi, and A. Tajoddin, “HPCMalHunter: Behavioral malware detection using hardware performance counters and singular value decomposition,” in 2014 4th International Conference on Computer and Knowledge Engineering (ICCKE), IEEE, Oct. 2014, pp. 703–708. doi: 10.1109/ICCKE.2014.6993402.
H. Tamura, M. Uchida, M. Tsuru, J. Shimada, T. Ikenaga, and Y. Oie, “Routing Metric Based on Node Degree for Load-Balancing in Large-Scale Networks,” in 2011 IEEE/IPSJ International Symposium on Applications and the Internet, IEEE, Jul. 2011, pp. 519–523. doi: 10.1109/SAINT.2011.96.
R. Elnaggar, K. Chakrabarty, and M. B. Tahoori, “Run-time hardware trojan detection using performance counters,” in 2017 IEEE International Test Conference (ITC), IEEE, Oct. 2017, pp. 1–10. doi: 10.1109/TEST.2017.8242063.
M. Ozsoy, K. N. Khasawneh, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Ponomarev, “Hardware-Based Malware Detection Using Low-Level Architectural Features,” IEEE Trans. Comput., vol. 65, no. 11, pp. 3332–3344, Nov. 2016, doi: 10.1109/TC.2016.2540634.
B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi, “Hardware Performance Counters Can Detect Malware,” in Proceedings of the 2018 on Asia Conference on Computer and Communications Security, New York, NY, USA: ACM, May 2018, pp. 457–468. doi: 10.1145/3196494.3196515.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Thanh Chi Phan, Hung Chi Tran

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.