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 Palmprint detection is employed for identifying individuals based on the 

unique patterns present on the surface of their palms. Palmprint detection 

aims to be used in biometric authentication systems for security applications 

such as access control, forensic identification, and identity verification. 

Several research works have been developed for palmprint detection but have 

faced relative difficulty achieving higher accuracy. In this paper, Gaussian 

Proximal Hough Transformative Regularized Incremental Extreme Learning 

(GPHTRIEL) is developed with higher accuracy. First, palm images are 

collected from the dataset. Preprocessed images are provided as input to 

Outlier Regularized Incremental Extreme Learning Machines, consisting of 

three types of layers. The input layer receives preprocessed palm images. The 

first hidden layer performs image segmentation. Next, a set of geometric 

features is extracted in the second hidden layer and sent to the third hidden 

layer. Finally, feature matching is performed using the Sokal–Sneath 

similarity index function. With this, the outlier robust function correctly 

detects palmprints with a minimum error. An experiment is carried out with 

different factors. The analyzed research results indicate that the GPHTRIEL 

technique achieves improved performance in 6% accuracy, 11% sensitivity, 

and 10% specificity and minimizes 14% computation time compared to 

conventional methods. 
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1. INTRODUCTION 

Automatic authentication utilizing biometric characteristics is steadily rising in popularity. 

Biometrics involves studying techniques for uniquely identifying individuals based on one or more intrinsic 

physical or behavioural traits, including fingerprints, finger veins, irises, faces, palmprints, etc. Palmprint 

identification offers several advantages, including robustness, user-friendliness, high accuracy, and cost-

effectiveness. Palmprints may contain more helpful information about humans than other behavioural traits. 

Many techniques have been developed in palmprint detection. However, an accurate and robust palmprint 

detection algorithm is a critical issue in automatic palmprint authentication systems. 

A Joint Constrained Least-Square Regression (JCLSR) framework was introduced in [1] by using 

deep convolutional neural networks (DCNN) with the aim of palmprint recognition. Though the framework 

enhances the accuracy of palmprint recognition, the time consumption and error rate were not minimized 

effectively. The Palmprint Enhancement Network (PEN) was developed in [2] and aimed to achieve robust 

identification through feature matching by applying a deep learning model. However, it failed to create a 

robust minutiae matching algorithm to minimize the time-consuming palmprint matching process. 

A multimodal palmprint biometric system was introduced in [3], integrating left and right palmprint 

images to achieve an optimal recognition rate. However, the system failed to consider a more significant 
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number of images in the dataset to evaluate the algorithm's robustness. A practical unimodal and multimodal 

biometric approach was introduced in [4] by employing deep learning and feature selection to recognize 

palmprint images rapidly. However, the processing time for palmprint recognition was high. A new palmprint 

identification algorithm utilizing Convolutional Sparse Coding was developed in [5] with minimal 

computational complexity. However, it was not efficient for processing a large number of training samples. A 

Convolutional Neural Network (CNN) was developed in [6] for hand segmentation to enhance contactless 

palmprint recognition. However, the performance of sensitivity in palmprint recognition was unaddressed. 

The line feature local tri-directional patterns were developed in [7] for palmprint recognition with 

minimal computational complexity. However, the robustness of the model was not enhanced. A multimodal 

ultrasound recognition method was developed in [8] by integrating palmprint feature fusion. However, the 

technique lacks improvement in the accuracy of palmprint recognition.  A Joint Pixel and Feature Alignment 

(JPFA) method was developed in [9] for palmprint recognition. The designed method minimizes the error 

rate, but the complexity of palmprint recognition was not reduced. An automatic palmprint alignment and 

classification system was developed [10] to enhance the accuracy significantly in palmprint verification. 

 

The key contributions of the GPHTRIEL technique are listed below,  

• The GPHTRIEL technique has been developed to enhance the accuracy of palmprint detection by 

incorporating several processes: segmentation, feature extraction, and classification into the Outlier 

Regularized Incremental Extreme Learning Machines. 

• To minimize computational time, the Gaussian proximal connectedness graph segmentation is employed 

in the hidden layer of Outlier Regularized Incremental Extreme Learning Machines to extract the ROI 

from the image. The Generalized Gradient Hough Transform is applied for principal line extraction, and 

adaptive weighted harmonic thresholding is used for wrinkle extraction. Log-Gabor filters are employed 

for ridge extraction, minutiae points extraction, singular points extraction, and texture extraction, which 

are performed based on correlation. 

• To enhance accuracy, a Sokal–Sneath similarity index has been introduced to compare the extracted 

feature vectors with the pre-stored feature vectors, thereby accurately detecting the palmprints. 

• To improve sensitivity and specificity, the GPHTRIEL technique incorporates an outlier-robust model 

into an incremental extreme learning machine for accurate palmprint detection. 

• To evaluate the performance of our GPHTRIEL technique, comprehensive experimentation is conducted 

and compared using various evaluation metrics. 

1.1. Organization of paper 

The paper is structured as follows: Section 2 reviews related works. In Section 3, the proposed 

GPHTRIEL technique is described in detail. Section 4 presents the experimental results along with a 

comprehensive quantitative analysis. Finally, Section 5 provides the paper's conclusion. 

 

2. LITERATURE REVIEW 

A robust features fusion methodology was introduced in [11] for palmprint recognition with 

minimal time consumption.  A unique multistep fusion matcher was introduced in [12] to enhance 

recognition. However, the accuracy of recognition still faces significant challenges. A keypoint selection 

algorithm was introduced in [13] for palmprint recognition. However, an efficient machine-learning model 

was not utilized to enhance the palmprint recognition process. A heuristic palmprint recognition approach 

was designed in [14] to focus on extracting three types of palmprint features. However, this approach failed 

to explore additional hand-crafted features to enhance palmprint recognition performance further.  

 A multimodal biometric system was developed in [15] based on palmprint and fingerknuckle traits 

for palmprint recognition. A simultaneous heterogeneous palmprint feature learning and encoding model was 

developed in [16] for heterogeneous palmprint recognition. However, it failed to collect a new heterogeneous 

palmprint database for further enhancing palmprint recognition. 

 An integration of an autoencoder (AE) and a convolutional neural network (CNN) model was 

developed in [17] for palmprint authentication. However, addressing the adoption of deep learning networks 

at different stages of the palmprint authentication process, from ROI extraction to classification, remained 

unaddressed.  A novel palmprint recognition model was developed in [18] using an adversarial domain 

approach. However, this model did not effectively reduce the complexity of palmprint recognition. 

 A deep generative architecture was designed in [19] to represent palmprint identification 

effectively. However, it failed to include ridge features for effective palmprint identification. An Extended 
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Binary Orientation Co-occurrence Vector (E-BOCV) was developed in [20] to enable cross-spectral 

palmprint recognition. 

DL-basis framework was introduced in [21] with higher matching precision. Soft-shifted triplet loss 

was utilized to find contactless palmprint images. However, the palmprint detector's performance was not 

sufficient. The extracted features are extracted in [22] with the aid of CNN Transfer Learning to achieve 

maximum efficiency. ML classifier was developed to compute the similarity for one-to-one matching. 

However, the computational time was higher.  

The novel network structure GLGAnet was discussed in [23] to combine CNN and Transformer. 

Feature selection method was introduced to pick the features. Deep convolutional layers were utilized for 

extracting local features. Next, a Transformer was employed to extract global features to minimize the 

dimensionality. However, the accuracy was not enhanced in palmprint recognition. Neural architecture search 

(NAS) technology was examined in [24] for palmprint vein recognition. However, the sensitivity was not 

considered. A correntropy-induced discriminative nonnegative sparse coding method was developed in [25] 

for accurate error detection. However, it failed to segment the palmprint images.   

 

3. PROPOSAL METHODOLOGY  

This section introduces a novel GPHTRIEL technique for accurate palmprint detection in biometric 

authentication with minimal time consumption. The method considers the challenges of precise palmprint 

detection in the biometric authentication system. The architecture of the proposed GPHTRIEL technique 

includes a structural framework that facilitates a complete workflow of various processes.   

 

 

Figure 1. Architecture diagram of the proposed GPHTRIEL technique 

 Figure 1 depicts the architecture of the proposed GPHTRIEL technique for accurate palmprint 

detection. As shown in the figure, several palm images 𝑃𝐼1,  𝑃𝐼2 ,  𝑃𝐼3 , … . ,  𝑃𝐼𝑛are collected from the dataset. 

After the image collection, the proposed GPHTRIEL technique includes different processes such as image 

segmentation, extraction, and classification integrated into an outlier regularised incremental extreme 

learning machine. The preprocessed images are given as input to the extreme learning machine. First, image 

segmentation is performed to extract the ROI from the input image. Following image segmentation, the 

different features of the palms, such as principal lines, wrinkles, ridges, minutiae points, singular points, and 

texture features, are extracted from ROI. Finally, feature matching is performed using the extracted features 

and pre-stored templates of the given palm images for accurate palmprint detection. These processes of the 

proposed GPHTRIEL technique are described in the following subsections. 

3.1.  Image acquisition and preprocessing  

The image acquisition and preprocessing are the fundamental steps in the proposed GPHTRIEL 

technique. Image acquisition involves capturing palm images from the Birjand University Mobile Palmprint 
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Database (BMPD). This dataset includes 1640 palm images from the left and right hands of 41 Iranian 

females. After collecting the image, image preprocessing involves improving their quality and enhancing 

features by removing the noisy artefacts from the input palm images.         

3.2. Outlier regularised incremental extreme learning machines 
 Incremental Extreme Learning Machine is a feed-forward neural network having a single or 

multiple layers of hidden nodes for classification and feature learning. An incremental approach in this 

Extreme Learning Machine involves incorporating new hidden nodes when the new input arrives. The Outlier 

regularisation is proposed to minimize the error in the accurate classification. These models can produce 

better performance and faster training speed than backpropagation deep learning networks. Therefore, the 

proposed GPHTRIEL technique uses the Outlier regularised incremental extreme learning machines for 

accurate palmprint detection with minimum time. 

 

 
Figure 2. Constructions of Outlier regularised incremental extreme learning machines. 

Figure 2 illustrates the constructions of Outlier regularised incremental extreme learning machines 

with a multiple layer of hidden nodes ‘ℎ𝑛’.  The constructions of the Extreme Learning classifier include the 

input layer, three hidden layers, and an output layer.  As shown in the above figure, let us consider that the 

training set {𝑃𝐼, 𝑌} where ‘𝑃𝐼’ denotes training palm images {𝑃𝐼1,  𝑃𝐼2,  𝑃𝐼3, … . ,  𝑃𝐼𝑛} and an output ‘𝑌' 

represents its output of palmprint detection.  

The input layer receives the preprocessed palm images but performs no calculations. The number of 

nodes or neurons in the input layer assigns the weights and the bias and remains fixed during the training 

phase. The activity of the neuron is represented as follows,  

 

𝑍 =  ∑ ∑ ( 𝑃𝐼𝑖 ∗  𝜏𝑗) +  𝑏𝑖ℎ
𝑚
𝑗=1

𝑛
𝑖=1                                                        (1) 

 

 Where 𝑍   indicates a neuron output,   𝜏𝑗 denotes weights between the input layer and hidden layer, 

preprocessed palm image ‘ 𝑃𝐼𝑖’.  Here, ‘ 𝑏𝑖ℎ’ indicates a bias.  The input sample is transferred into the first 

hidden layer, where image segmentation is carried out by applying a Gaussian proximal connectedness graph 

segmentation. 

 It is the process of partitioning the images into different regions to extract meaningful information 

by connecting the similar pixel intensity of the image.  Let us consider the Graph 𝐺 =  〈𝑞𝑖 , 𝐶〉  where 𝑥𝑖 

denotes a pixel  𝑞1,𝑞2, 𝑞3, … 𝑞𝑚 and '𝐶‘ indicates connectivity or connectedness between the pixels.  

Therefore, the degree of connectivity between the pixels is measured by applying the graph 

segmentation algorithm given below, 

 

𝐶 = 𝑚𝑎𝑥{𝑄 (𝑞𝑖,𝑞𝑖+1|𝑖 = 1,2, … 𝑚)}                                       (2) 

𝑄 = exp (−
𝑑𝑖𝑗2

2𝜎2 )                           (3) 

𝑑𝑖𝑗 =
1

𝑚
∑|𝑞𝑖 − 𝑞𝑖+1|                         (4)  

 

Where ‘ 𝐶' denotes connectivity or connectedness between the pixel intensity 𝑞𝑖 and 𝑞𝑖+1, 𝑄  

denotes a Gaussian function ranging from 0 to 1, 𝑑𝑖𝑗 denotes a Prevosti's distance between the pixels, 

𝜎 𝑑enotes a deviation, 𝑚 denotes the number of pixels,   𝑚𝑎𝑥 𝑚 denotes a maximum value.  
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 From the above (2)(3)(4), the maximum value of the ‘𝑄’ provides better proximal connectivity 

between the two pixels. In other words, the pixel intensity 𝑞𝑖 and 𝑞𝑖+1 are called adjacent. Therefore, the 

adjacent pixels are grouped to form a region. In this way, image segmentation is carried out, and the ROI is to 

minimize the time complexity of the palmprint detection. The extracted ROI is given to the next hidden layer 

for feature extraction. The second hidden layer extracts principal lines, wrinkles, ridges, minutiae points, 

singular points, and texture features.  

Principal lines, also known as primary or major lines, are essential features observed on the palm 

surface. It typically comprises three main lines: the heart line, the headline, and the lifeline. Each line 

represents different aspects of a person's personality and traits. These lines are extracted using the generalized 

gradient Hough transform. 

Let us consider the pixel with coordinates (𝑥𝑖 , 𝑦𝑖). The principle lies are extracted as follows, 

 

𝑅 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃                        (5) 

 

Where 𝑅 indicates a distance from the origin to the closest point on the straight line,  𝜃 is an angle 

between the ‘𝑥’ axis and the normal to the line. After calculating the distances, the peaks in the Hough 

collector array are determined to correspond to potential lines in the image. A Hough collector array ‘𝐴’ is a 

two-dimensional array that stores information about the presence of particular line patterns ‘𝑅’ in an input-

segmented image. 

 

𝐴 = [

𝑅11 𝑅12 … 𝑅1𝑛

𝑅21 𝑅22 … 𝑅2𝑛

⋮ ⋮ ⋮ ⋮
𝑅𝑚1 𝑅𝑚2 … 𝑅𝑚𝑛

]                                   (6) 

 

 These peaks are detected using the gradient ascent method. The gradient ascent is a mathematical 

function used for finding a height peak through the local maximum of a function in the vertical direction.  

 

𝐺 = arg max 𝑅                        (7) 

 

Where 𝐺  denotes a gradient ascent function, arg max 𝑅 denotes an argument of a maximum 

function to find maximum peaks in an array ‘𝐴’ for line detection.  In this way, principles are detected.   

Wrinkle: it refers to the fine lines gathered on the skin's surface, which are unique to each individual 

for identification or verification. The adaptive weighted harmonic thresholding technique is employed for 

wrinkle extraction.  

Let us consider pixels  𝑞1,𝑞2, 𝑞3, … 𝑞𝑚 in an image.  The local mean intensity of pixels is computed 

using weighted harmonic mean as follows, 

 

𝜇𝑥 = (
∑ 𝜑𝑖𝑞𝑖

−1𝑚
𝑖=1

∑ 𝜑𝑖
𝑚
𝑖=1

)
−1

                        (8) 

 

Where 𝜇𝑥 denotes a weighted harmonic mean, 𝜑𝑖 denotes a weight assigned to pixels '𝑞'. Then, 

define the threshold value and extract the wrinkle region.  

 

𝑍 = {
𝜇𝑥 > 𝑇, 1
𝜇𝑥 < 𝑇, 0

                         (9) 

 

Where 𝑍 denotes an output of wrinkle region extraction, 𝜇𝑥 denotes the weighted harmonic mean, 

𝑎𝑛𝑑 𝑇 denotes a threshold. The intensity of the pixel means ‘𝜇𝑥 ' is greater than the local threshold 'T', then 

the wrinkle region labelled as '1' is extracted. Otherwise, the output  𝑍 is labelled as '0'.   

Ridges: The Log-Gabor filter is a type of filter commonly used for ridge extraction in palmprint 

images. The Log-Gabor filter function G(x, y) in the spatial domain is defined as: 

 

G(x, y) = exp (−0.5 ∗
(𝑙𝑜𝑔(

𝑥2+𝑦2

𝑓0
2 ))

2

𝑣2 )                  (10) 
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Where G(x, y) denotes a Log-Gabor filter function, x and y are spatial coordinates of pixels, 𝑓0 

indicates a central frequency parameter, and 𝑣  indicates controls the bandwidth of the filter.  To enhance 

ridge structures in a palmprint image using the Log-Gabor filter, the input image is convolved with the Log-

Gabor filter function in the spatial domain as follows, 

 

𝐹 = 𝐺(𝑥, 𝑦) ∗ 𝑃𝐼 (𝑥, 𝑦)                   (11) 

 

Where 𝐹 denotes an outcome, 𝐺(𝑥, 𝑦) denotes a Gabor filter function, and 𝑃𝐼 (𝑥, 𝑦) denotes the 

input image. 

Minutiae points: Identify candidate minutiae points by locating ridge endings (terminations) and 

ridge bifurcations. Ridge Endings is a point where ridges terminate immediately. Ridge bifurcations are also 

points where a ridge splits into two branches. 

Let us consider the given ridge pixel at the coordinates (𝑥1, 𝑦1) and define a local neighbourhood 

ridge pixel coordinate (𝑥2, 𝑦2).   The average distance between these two pixels is calculated as follows, 

 

𝐴𝑉𝐷 =
1

𝑁
∑ ∑ 𝐷𝑖𝑗

𝑚
𝑗=1

𝑛
𝑖=1                     (12) 

 

Where 𝐴𝑉𝐷 is the average distance between these two ridge pixels, 𝑁  denotes the total number of 

neighbourhood ridge pixels, 𝑎𝑛𝑑 𝐷𝑖𝑗  denotes the distance of each pixel to the nearest background pixel. 

Therefore, the Ridge Ending is determined by setting the threshold value for the average distance,  

 

𝑊 = {
𝐴𝑉𝐷 >  𝛽,                    𝑅𝑖𝑑𝑔𝑒 𝑒𝑛𝑑

𝐴𝑉𝐷 <  𝛽, 𝑛𝑜𝑡 − 𝑅𝑖𝑑𝑔𝑒 𝑒𝑛𝑑
                   (13) 

 

If the average distance is below a predefined threshold ‘𝛽’, the pixel at coordinates is classified as a 

ridge ending.  

Ridge Bifurcations: If the pixel has more than two ridge neighbours' pixels within a certain distance 

threshold '𝛽’, classify it as a ridge bifurcation.  

 

𝐻 = {
𝑞𝑗 > 2 ,                    𝑟𝑖𝑑𝑔𝑒𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,          𝑛𝑜𝑡 − 𝑟𝑖𝑑𝑔𝑒𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛
                   (14) 

 

Where 𝐻 denotes an output function of Bifurcations, 𝑞𝑗 denotes a neighbouring pixel.  

 Singular point extraction: Singular points, including core points from palm images for recognition. 

If the pixel has multiple ridges neighbouring pixels within a certain distance threshold, classify it as a core 

point. 

 Texture feature: it is measured to provide the spatial correlation between the pixels' intensities.    

 

𝑇𝐹 =
1

𝛿𝑖∗ 𝛿𝑗
∑ ∑ (𝑞𝑖 −  𝜇𝑖)(𝑞𝑗 − 𝜇𝑗)𝑗𝑖                            (15) 

 

Where’𝑇𝐹’ indicates the texture feature, 𝑞𝑖  denotes a pixel,  𝑞𝑗 denotes a neighbouring pixel, 𝑎𝑛𝑑 𝜇𝑖 

and 𝜇𝑗 indicate a mean of the pixels and neighbouring pixels, respectively.  

Finally, the feature vector ‘𝑆𝐹𝑉’ is formed by combining all features in a single vector as follows, 

 

𝑆𝐹𝑉 = ∑ [𝐹𝑘]𝑀
𝑘=1                        (16) 

𝐹𝑘 =  [𝑃𝐿𝑗 , 𝐿𝑗 , 𝑀𝑃𝑗 , 𝑆𝑃𝑗 , 𝑇𝐹𝑗]                     (17) 

 

Where 𝑃𝐿𝑗 ,  𝐿𝑗, 𝑀𝑃𝑗 ,  𝑆𝑃𝑗 , 𝑎𝑛𝑑 𝑇𝐹𝑗  denote Principal lines, wrinkles, ridges, minutiae points, singular 

points, and texture features, respectively 

Finally, the extracted feature vectors are sent to the third hidden layer, where the classification is 

performed through the Sokal–Sneath similarity index function. It is a statistical method used to find the 

similarity between the extracted features and the pre-stored template features vector.   

 

𝑆𝑆 =
[𝑃𝐹𝑉∩ 𝑆𝐹𝑉]

[𝑃𝐹𝑉 ∪ 𝑆𝐹𝑉]+[𝑃𝐹𝑉∆ 𝑆𝐹𝑉]
                                              (18) 

 

 Where ‘ 𝑆𝑆’ denotes a Sokal–Sneath similarity index, 𝑃𝐹𝑉 denotes a set of ‘extracted feature 

vectors, 𝑆𝐹𝑉 indicates stored pre-stored templates features vector,  𝑃𝐹𝑉 ∩  𝑆𝐹𝑉  denotes a mutual 
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dependence between two features vectors,  𝑃𝐹𝑉∆ 𝑆𝐹𝑉 denotes a variation between the two features vectors, 

𝑃𝐹𝑉 ∪  𝑆𝐹𝑉 represents the mutual independence between two features vectors. The coefficient (𝑆𝑆) provides 

the output ranges between 0 and 1.   

 

𝑆𝑆 = {
1;         𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑑
0;   𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑛𝑜𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑑

                                   (19) 

 

As a result, the palmprint is detected at the final output layer. The output of the hidden layer is a 

linear combination of different functions, as given below,  

 

ℎ =  ∑ 𝑎(  𝑃𝐼𝑖 ∗  𝜏ℎ𝑜 + 𝑏ℎ𝑜)𝑛
𝑖=1                      (20) 

 

Where ℎ’ represents the hidden layer output, ‘𝑎’ indicates a sigmoid activation function of hidden 

neurons, ' 𝜏ℎ𝑜 ' denotes the weight between the hidden and output layer neurons, and 𝑏ℎ𝑜 bias between the 

hidden and output layers.  

 

𝑎 = (1 + exp(𝑆𝑆))−1                     (21) 

     

The outlier robust function aims to minimize the error as follows,  

 

𝑂𝑇 = arg min|𝐿2| +
1

𝑟
|𝜏𝑜|2                    (22) 

 

Where 𝑂𝑇  denotes an outlier robust function, 𝑎𝑟𝑔 𝑚𝑖𝑛 denotes an argument of the minimum 

function, 𝐿 indicates an error function,𝑟 indicates the regularization parameter,𝜏𝑜 indicates the weight of the 

output.  The regularization parameter is used in extreme learning machines to control the balance between 

fitting the training data well and preventing overfitting. Overfitting means that the model failed to fit 

additional data.  By using this strategy, accurate palmprint detection is achieved, resulting in minimized time 

consumption.  The pseudo-code for the proposed GPHTRIEL is described as follows,  

 

Algorithm 1:  Gaussian Proximal Hough Transformative Regularized Incremental Extreme 

Learning  

Input: Dataset,  Number of preprocessed palm images𝑃𝐼1, 𝑃𝐼2, 𝑃𝐼3, … . , 𝑃𝐼𝑛 ,  

Output: Increase accuracy  of palmprint  detection 

Begin 

1.   Collect the number of preprocessed palm images𝑃𝐼1, 𝑃𝐼2 , 𝑃𝐼3, … . , 𝑃𝐼𝑛, -input layer 

2.   for each input palm image—hidden layer 1 

3.          Measure the degree of connectivity using (2) (3) (4) 

4.          Find Adjacent pixels  

5.          Segment the ROI from the image 

6.   end for 

7.   for each ROI -------hidden layer 2 

8.          ApplyGeneralized gradient Hough transform to extract principle lines using (5) (6) (7) 

9.          Apply adaptive weighted harmonic thresholding to Extract-Wrinkle using (8) (9) 

10.        Apply Log-Gabor filter to extract Ridges using (10) (11) 

11.        Extract Minutiae points using (12) (13) 

12.        Extract Ridge Bifurcations using (14) 

13.        if the pixel has multiple ridge neighbouring pixels 

14.               Extract core points  

15.        end if 

16.        Extract texture feature using (15) 

17.        Combine features into vectors using (16) (17) 

18.   for extracted feature vector ‘𝑆𝐹𝑉’-------hidden layer 3 

19.   for pre-stored texture‘𝑃𝐹𝑉’ 

20.   Measure the Sokal–Sneath similarity index function using (18) 

21    if (𝑆𝑆 = 1 ) then 

22.      features are matched 

23.   else 

24.      features are not matched 

25.   end if 



ISSN: 2583-6250         Prisma Publications 

 

Int. J. of DI & IC, Vol. 3, No. 1, March 2024: 23-35  30 

26.   for each output  

27:       Apply the Outlier robust function using (22) to minimize the error  

28:    end for 

29:        Obtain the accurate detection results -- output layer 

End 

 

 Algorithm 1 describes the steps involved in Gaussian Proximal Segmentive Outlier Regularized 

Incremental Extreme Learning Machines for palmprint detection. Initially, the algorithm collects a number of 

preprocessed palm images and provides them to the input layer. Subsequently, ROI segmentation is 

performed in the first hidden layer by measuring the degree of connectivity between pixel intensities, 

resulting in reduced palmprint detection time. Following this, multiple features such as principal lines, 

wrinkles, ridges, minutiae points, singular points, and texture features are extracted to form a vector. Finally, 

the feature vectors are correlated with the pre-stored vector by applying the Sokal–Sneath similarity index. 

Palmprint detection is performed based on the similarity index. The outlier robust function minimizes the 

error rate, resulting in improved sensitivity and specificity. 

 

4. EXPERIMENTATION   

4.1. Experimental setup   

In this section, the GPHTRIEL technique, along with two existing methods, JCLSR [1] and PEN 

[2], is implemented using MATLAB coding. The evaluation is performed using the   Birjand University 

Mobile Palmprint Database (BMPD) taken from https://www.kaggle.com/datasets/mahdieizadpanah/birjand-

university-mobile-palmprint-databasebmpd. The Palmprint Database consists of 1640 images obtained from 

both the left and right hands of 41 Iranian females during two separate sessions, with a two-week interval 

between sessions. During the initial session, participants were directed to position their hands against a black 

background. Following this, six images of each palm were captured from a distance of 20 cm in an open 

environment. For experimental purposes, 100 to 1000 images are selected from the database. 

 

5. COMPARATIVE RESULT AND DISCUSSION  

This section presents a comparative analysis of the GPHTRIEL technique, along with two existing 

methods, JCLSR [1] and PEN [2]. The performance analysis employs metrics such as Palmprint detection 

accuracy, sensitivity, specificity and computational time.  The performance of each technique in terms of 

these metrics is illustrated through tables and graphical representations. 

 

Palmprint detection accuracy: It refers to the ratio of correctly detected palmprint images to the total number 

of palmprint images. It is typically calculated using the following formula: 

 

𝑃𝐷𝐴 = ∑ (
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑙𝑚𝑝𝑟𝑖𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠

𝑃𝐼𝑖
)𝑛

𝑖=1 ∗ 100                         (23) 

 

 Where 𝑃𝐷𝐴 indicates a palmprint detection accuracy, 𝑃𝐼 denotes a palmprint image. Accuracy is 

measured in terms of percentage (%).    

 

Sensitivity: Also known as the True Positive Rate (TPR) or Recall, measures the proportion of actual positive 

cases that are correctly identified by a palmprint detection model.  Mathematically, sensitivity is calculated 

using the following formula,  

 

𝑆𝑁 =  
𝑇𝑝

𝑇𝑝+𝐹𝑛
                        (24) 

 

 Where 𝑆𝑁 denotes a sensitivity, 𝑇𝑝 denotes a true positive that the images are correctly detected as 

matched with the stored template of the same individual, 𝑎𝑛𝑑 𝐹𝑛 indicates a false negative referring to 

palmprint images incorrectly detected as not matched but are actually matched. 

 

Specificity: In palmprint detection, specificity refers to the ability of the technique to correctly detect whether 

palmprint images belong to the same individual or not. 

 

𝑆𝑃 =  
𝑇𝑛

𝑇𝑛+𝐹𝑝
                            (25) 

https://www.kaggle.com/datasets/mahdieizadpanah/birjand-university-mobile-palmprint-databasebmpd
https://www.kaggle.com/datasets/mahdieizadpanah/birjand-university-mobile-palmprint-databasebmpd
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 Where 𝑆𝑃 denotes a specificity, 𝑇𝑛 denotes a true negative that the images that are detected as 

matched but are actually not matched, and 𝑓𝑝 indicates false positives, which refer to matched images that 

are incorrectly detected as not matched. 

 

Computational time: It is measured as the amount of time consumed by the technique for pamprint detection. 

The overall time consumption is formulated as follows,  

 

𝐶𝑜𝑚𝑝_𝑇 = ∑ 𝑃𝐼𝑖
𝑛
𝑖=1 ∗ 𝑇  [𝐷𝑃𝐼]                     (26) 

 

 Where 𝐶𝑜𝑚𝑝_𝑇 indicates the computational time, 𝑇 indicates a time, and 𝐷𝑃𝐼 indicates detecting 

the single palmprint image (𝐷𝑃𝐼). The overall computational time of palmprint detection is measured in 

terms of milliseconds (ms). 

 

Table 1. Comparison of palmprint detection accuracy 

Number of 

images 

Palmprint detection accuracy (%) 

Proposed 

GPHTRIEL 
Existing JCLSR Existing PEN 

100 95 90 91 

200 95.5 87.5 90 

300 93.33 85 88.33 

400 94.5 88.75 90 

500 94 86 88 

600 95 90.33 92 

700 93.57 87.85 89.71 

800 94.75 89.37 91.25 

900 94.44 89.44 91.11 

1000 93.3 86.5 88.5 

 

 
Figure 3. Performance results of accuracy 

 

Figure 3 depicts a graphical illustration of palmprint detection accuracy versus the number of 

images, ranging from 100 to 1000. The numbers of palm images are taken on the horizontal axis, and the 

accuracy is observed on the vertical axis. The results graphically illustrate that the proposed GPHTRIEL 

technique attains higher palmprint detection accuracy compared to existing methods [1] and [2]. For each 

method, ten various results were observed with varying numbers of input images. The observed results 

demonstrate that the GPHTRIEL technique outperforms other deep learning models. Considering the first 

iteration involving 100 images, the palmprint detection accuracy using the GPHTRIEL technique was 

observed to be 95%. Subsequently, 90% and 91% palmprint detection accuracy were observed by applying 

[1] and [2], respectively. Multiple iterations were performed for each method, and the overall outcomes were 

compared. The average of ten comparison results indicates that the GPHTRIEL technique increased the 

palmprint detection accuracy by 7% when compared to [1] and 5% when compared to [2]. This is because the 
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GPHTRIEL technique utilizes an Outlier Regularized Incremental Extreme Learning Machines for estimating 

the features using the Sokal–Sneath similarity index function. Based on the similarity measure, matched 

palmprints and unmatched ones are correctly detected with the minimum error by applying the outlier robust 

function. 

 

Table 2. Comparison of Sensitivity 

Number of 

images 

Sensitivity 

Proposed 

GPHTRIEL 
Existing JCLSR Existing PEN 

100 0.931 0.809 0.852 

200 0.952 0.820 0.862 

300 0.944 0.845 0.874 

400 0.936 0.865 0.895 

500 0.952 0.852 0.882 

600 0.937 0.836 0.863 

700 0.942 0.822 0.842 

800 0.940 0.836 0.866 

900 0.952 0.854 0.885 

1000 0.937 0.833 0.855 

 

 
Figure 4. Performance results of sensitivity 

 

 Figure 4 depicts a graphical representation of sensitivity versus the number of images, ranging from 

100 to 1000. The results illustrate that the proposed GPHTRIEL technique achieves higher sensitivity 

compared to existing methods [1] and [2]. For each method, ten different results were observed with varying 

numbers of images. The observed results demonstrate that the GPHTRIEL technique outperforms other 

methods. From the comparison analysis, the overall performance of sensitivity using the GPHTRIEL 

technique is improved by 13% and 9% compared to [1] and [2], respectively. This improvement is achieved 

by incorporating an outlier-robust function into the incremental extreme learning machines. This function 

minimizes the deviation between the expected and actual palmprint detection outcomes through the 

regularization parameter, resulting in increased true positives and minimized false negatives. 
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Table 3. Comparison of Specificity 

Number of 

images 

Specificity 

Proposed 

GPHTRIEL 
Existing JCLSR Existing PEN 

100 0.740 0.675 0.687 

200 0.785 0.680 0.725 

300 0.823 0.7 0.778 

400 0.855 0.695 0.795 

500 0.796 0.705 0.752 

600 0.822 0.755 0.8 

700 0.805 0.698 0.768 

800 0.765 0.705 0.744 

900 0.804 0.711 0.755 

1000 0.799 0.675 0.71 

 

 
Figure 5. Performance results of specificity 

 

 Figure 5 illustrates the performance analysis of specificity by applying three methods, namely the 

GPHTRIEL technique, JCLSR [1], and PEN [2], versus the number of palm images collected from the 

dataset. As depicted in Figure 5, the specificity performance is shown to be relatively higher using the 

GPHTRIEL technique compared to [1] and [2]. The comparison results reveal that the specificity of the 

proposed GPHTRIEL technique is improved by 14% and 6% compared to [1] and [2], respectively. This 

improvement is achieved through the application of Outlier Regularized Incremental Extreme Learning 

Machines, which accurately detect matched and unmatched palm images through feature vector analysis 

using Sokal–Sneath similarity. 

 

Table 4. Comparison of computation time 

Number of 

images 

Computational time (ms) 

Proposed 

GPHTRIEL 
Existing JCLSR Existing PEN 

100 33 45 42 

200 42 52 48 

300 48 60 57 

400 56 68 62 

500 60 70 67.5 

600 66 78 75 

700 70 80.5 79.1 

800 74.4 84 81.6 

900 79.2 88.2 86.4 

1000 82 92 90 
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Figure 6. Performance results of Computational time 

  

Figure 6 presents the performance results of computational time for palmprint detection using three methods, 

namely the GPHTRIEL technique, JCLSR [1], and PEN [2]. The figure indicates that computational time 

increases as the number of images taken from the datasets rises from 100 to 1000. This increase is due to the 

larger number of images involved during palmprint detection, resulting in a significant amount of time being 

consumed. However, experiments with 100 images show that the time consumed for palmprint detection was 

found to be 33 𝑚s. In comparison, the overall time for [1] and [2] was found to be 45 𝑚𝑠 and 42 𝑚𝑠, 

respectively. This result implies a significant reduction in computational time by 16% and 12% compared to 

[1] and [2], respectively. The improvement is achieved by performing ROI segmentation and feature 

extraction. In ROI segmentation, the Gaussian proximal connectedness graph method is employed to measure 

the degree of connectivity between pixels. After that, similar pixels are grouped to extract the ROI from the 

input image. Subsequently, a set of geometric features, including principal lines, wrinkles, ridges, minutiae 

points, singular points, and texture features, are extracted. With these selected features, accurate palmprint 

detection is achieved with minimal time consumption.  

 

6. CONCLUSION 

Palmprint detection involves identifying and analyzing the distinct patterns found on an individual's 

palm for robust biometric applications. This paper proposes a GPHTRIEL technique for robust palmprint 

detection with higher accuracy and minimal time consumption. The GPHTRIEL technique collects input 

images. First, segmentation of the ROI is performed to minimize the palmprint detection time. Following 

this, geometric methods are employed to extract different features from the palm images. With the extracted 

feature vector, palmprint detection is performed through feature matching with higher accuracy. Quantitative 

performance research results indicate that the presented GPHTRIEL technique achieved higher accuracy, 

sensitivity, and specificity up to 6%, 11%, and 10% in palmprint detection. Additionally, computational time 

in palmprint detection was minimized by 14% when compared to existing methods. In future work, we will 

examine the applicability of deep learning models and transfer learning concepts for biometric palmprint 

recognition. Also, the different parameters such as space complexity and precision are considered for 

Palmprint Detection. 
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