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Knowledge mining from clinical datasets is a critical task in healthcare as 

well as other fields. While the existing methods, such as randomized 

controlled trials (RCT) and other automatic machine extraction, have been 

helpful, they have become increasingly insufficient to keep pace with time, 

and robust models are required for clinical decisions. In this paper, we 

present a new method to address this challenge by using the Causal graph 

ontological model. Our study used a semi-structured textual clinical 

discharge dataset from the Statewide Planning and Research Cooperative 

System (SPARCS) to design and validate the patient survival rate 

assumptions from the dataset. We extracted the clinical information and 

organized it according to medically relevant fields for decision-making 

(Diseases, confounders, treatment, and the survival rate). The initial 

assumptions model was validated using the conditional independent test 

(CIT) criteria. The outputs of the LocalTest validation showed that the 

conceptual assumptions of the causal graph hold since the Pearson 

correlation coefficient ranges between -1 and 1, the p-value was (>0.05), and 

the confidence intervals of 95% and 25% were satisfied. Furthermore, we 

used Shapley values to perform sensitivity analysis on the features. Our 

analysis showed that two variables, such as gender and diseases, contributed 

little to the survival rate prediction. Our study concludes that the 

combination of causal graph ontological framework and sensitivity analysis 

to discover knowledge from the clinical text could help improve the quality 

of clinical decisions in the text, remove bias in the assumption in medical 

applications, and serve as a premise for modelling causal data for natural 

Language machine learning predictions.  
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1. INTRODUCTION 

Knowledge discovery from textual data using causality is a new basis for reasoning and decision-

making in natural language-based artificial intelligence systems. This is because causal graphs can be 

exploited to contribute to advancements in statistical methods, natural language processing (NLP), and 

machine learning to extract meaningful relationships from unstructured medical data [1]. The recent 

availability of electronic health records (EHR) has made this area of research a burgeoning domain. The 

volume of clinical information presents both challenges and opportunities for medical researchers, data 

scientists, and clinical decision-makers who seek to extract valuable insights and generate new knowledge 

from the vast amount of available clinical data [2]. Traditional methods such as randomized controlled trials 

(RCT) and other knowledge discovery methods to decipher causal knowledge from data have become 

problematic for reasons such as cost, ethics, and the ability to keep pace with the urgency required for clinical 

decisions [3]. As a result, it becomes pressing to devise new methods and technologies that can efficiently 

utilize observational data to process, analyze, validate, and synthesize knowledge from textual sources [4]. 

In recent times, one of the cutting-edge methods to address information extraction (IE) from 

observational clinical data is the Causal graphs (CGs). The field of causality in clinical care deals with how to 

map cause and effect relations from data, which can be a relationship between two or more entities in a 
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numerical or textual format [5]. In clinical terms, such a method seeks to establish whether a patient suffering 

from a disease survives based on relationships between treatment, the confounders (age, severity of the 

disease, sex), and the outcome, etc. However, despite the progress made in the use of causal models to extract 

causal relations from observational datasets, the causal assumptions from these models are not validated for 

correctness before using them for medical decisions. A study by [6] surveyed causal model applications in 

healthcare and revealed that the model's assumptions were not tested or validated. Thus, doubts are cast on 

the model assumptions and the eventual discovery of knowledge from the process. Therefore, in this study, 

we have modelled a novel causal graph based on the domain knowledge from a semi-structured clinical 

discharge dataset to establish the survival of patients in the textual dataset. We employed a causal graph to 

map causal relations by extracting causal variables from a semi-structured textual clinical dataset converted 

to a causal graph, which can be useful to medical practitioners in quickly establishing cause and effect 

relationships, such as treatments-mediates-survival, confounders-cause-complications, treatments-improve-

survival, and by extension help the caregivers to customize treatment, improve conditions or curate survival 

plans for the patients. We used the conditional independence test (CIT) criteria and Shapley values sensitivity 

analysis for testing the causal assumptions of the textual dataset to determine the correctness of our 

assumptions from the textual dataset.  

Building such causal relations using causal graphs from medical texts can be of great importance to 

medical science. According to [7], the importance of causal knowledge discovery in the medical diagnostic 

process includes improving the accuracy of diagnosis, helping to explain the causal relations in diagnosis and 

selecting intervention strategies for a particular disease. Given the critical importance of knowledge 

discovery (KD) from causal relations in clinical decision-making, there is traction in research aimed at 

incorporating medical causal knowledge into clinical decision support systems by adopting related tools such 

as causal discovery ontology and inference [7][8].  
 

The specific contributions of this paper are:  

• Perform knowledge discovery (KD) from textual clinical dataset  

• Converts clinical text into causal knowledge using a causal graph.  

• Validate the causal graph assumptions 

• Propose an algorithm for extraction and validation of causal clinical text causvalidationes. 

• Propose a Causal Graph Ontological framework for explainable clinical text.  

 

The rest of this study is structured as follows: we reviewed related studies, the basic concept of the 

causal model, and assumptions driving the causal graphs in section 2. In section 3, we discussed the 

methodology. Section 4 presents the causal graph knowledge discovery process, the results of the causal 

graph validation, and the discussion of the results. Section 5 concludes the study and gives direction for 

future work. 

 

2. LITERATURE REVIEW  

Causal variables extraction and relation is the central concern of causal machine learning made 

possible by recent artificial intelligence in medical data [6]. Recently, there has been research traction in 

causality; however, it remains an evolving field, especially in textual tasks, because of the difficulty of 

extracting causal variables from text [9]. Survey research by [6] revealed that studies in causality extraction 

(CE), have received attention in areas such as medical care, social science, media, biomedicine, emergency 

management, etc. This shows the wide application of causality and causal graphs in knowledge discovery. A 

study by [10], revealed that causal graphs can extract causal variables expressed in clinical text with clarity 

on cause-effect relationships. Their study proposed a method that can extract causal variables from clinical 

notes and convert them into causal graphs, which can effectively establish the relationships described in the 

text. Similarly, [11] highlights the importance of identifying confounding variables through causal graphs, 

noting that while the existing methods of text analysis yield huge graphs, they are not tailor-made for 

precision. A study by [11] established the need to curate a clinical dataset that can be used for precision 

decision-making in a particular demography. Moreover, the use of causal graphs to model electronic health 

records (EMRs) continues to present both opportunities and challenges. Research by [12] revealed the 

potential of knowledge graph technology in the medical field, particularly in constructing causal inference 

and discovery from large datasets. They suggest that the continuous growth of EMRs provides a rich source 

of data for causal discovery and machine-learning applications that can enhance the quality of causal 

decision-making. The application of advanced machine learning techniques, such as graph neural networks, 

has also been explored in this context. For instance, [13] proposes the extraction of causal variables through 

the use of a graph neural network to enhance causal event extraction by incorporating prior knowledge from 

causal networks. This approach underscores the importance of contextual understanding in capturing causal 
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relationships from text based on cause and effect rather than spurious correlations in traditional machine 

learning predictions. Furthermore, [14] illustrates how large electronic medical records can be converted into 

causal health knowledge graphs for medical decision-making.  

Despite the advancement in causal inference and discovery research to extract knowledge from 

clinical data, there is still a challenge in ensuring that the extracted entities align with the logical structure of 

the medical texts, as highlighted by [15], who noted that developing personalized causal graph from clinical 

data should be made to realign with causal assumptions in a dataset and should also be validated. Moreover, a 

study by [6] revealed that one of the issues in constructing causal graphs from clinical texts is how to extract 

and validate causal assumptions from the unstructured dataset.  

To address these issues, our study reviewed closely related studies that attempt to fill these gaps, and 

it also covered knowledge discovery in clinical discharge text.  

 

Table 1. Summaries of related studies of causal discovery using causal graph 

References Research Focus Method Gap identified 

[3] Design and validation of a 

Causal Model that focused on 

educational datasets. 

The study designed and 

validated a causal graph from 

an educational dataset in the 

Northeast Nigeria (SENSE - 

EGRA) project. 

The study focused on the 

educational dataset but 

validated the causal graph 

with the Conditional 

Independence Test (CIT).  

[8] The use of Directed acyclic 

graphs in clinical risk 

prediction modelling. 

Incorporating causal 

knowledge into clinical risk 

prediction model using the 

Markov principle. 

 

The study used the 

Logistic regression model 

as an evaluation metric 

[23] Causality-based feature 

selection: Methods and 

evaluations. 

Causal-based variable 

selection using a synthetic 

and real-world dataset  

The study used the 

CausalFS algorithm for 

causal discovery 

[24] Integrating causal model 

ontologies with LIME for 

machine learning 

explanations in educational 

admissions.     

The use of causal structure 

and LIME to extract 

admission criteria from an 

admission database  

Gaussian Naïve Bayes, 

Decision Trees, and 

Logistic Regression. 

[25] Use of Shapley values for 

data valuation in medical 

imaging application  

Use of Shapley values for 

data valuation and bias in 

dataset 

Identifying bias in data 

valuation  

 

From the review listed in Table 1, similar studies have been conducted in the areas of causal 

discovery using causal graphs. The study by [8][23][24] discussed the value of causal discovery using causal 

DAG. However, the results of their studies were evaluated using logistic regression, causal and Gaussian 

Naïve Bayes, Decision trees and logistic regression, respectively. Our study was closely related to [3], which 

designed and validated a novel causal model in an educational dataset provided by research to strengthen 

early education programs in Northeast Nigeria. Our study builds on these studies [3][8][23][24][25] by 

designing and validating the causal graph assumption with a conditional independence test (CIT). The 

novelty of our study is demonstrated with the combination of conditional independence test (CIT) and 

Shapley values to estimate the sensitivity analysis of the input variables on the output of the patient survival 

in a clinical discharge text.  

2.1. Causal Graph Design and Validation 

A causal graph can show a higher form of understanding of observational data by describing the 

causal relationships learned about the data. It is denoted as 𝐺= (𝑉, E), which consists of two or more nodes or 

vertices representing a set of a random variable (𝑉), 𝑤ℎ𝑒𝑟𝑒 𝑉=𝑋1, 𝑋2…𝑋𝑛 and the connecting edges called 

(𝐸). Studies by [16] pointed out three levels of causal hierarchy, as revealed by Pearl: the association level, 

intervention level, and counterfactual level.  

From the causal hierarchy coined by [16] as shown in Table 2, our study resides at the level of 

observation in an observational clinical dataset. More so, a directed Acyclic Graph, which takes the form of a 
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fork, collider, and chain/mediator, is the dominant form of causal graph model and works with most causal 

algorithms, while a few work with the cyclic graph condition [3]. The causal assumption supported in DAG 

is that of acyclicity, which means that the flow of information in the causal structure is not cyclical [4]. DAG 

provides an approach to encode conceptual assumptions graphically by depicting the hypothesized causal 

relationships in an observational dataset. It also provides a mathematical model that can be analyzed [17]. 

More so, a causal diagram can help us understand whether and how to identify a causal effect in 

observational data and test if the assumptions encoded in the DAG were supported.  

 

Table 2. Pear level of causal hierarchy culled [16] 

Leve Action Query Example 

Associational learning  

P(Y ∣ x) 

Observing   How does observing  

  X = x influence Y? 

Does caffeine generally tend 

to cause insomnia than carbon 

monoxide? 

Interventional learning 

P(Y ∣ do(x), z) 

Conditioning  How does intervening on X 

= x affect Y given Z = z? 

Is there a causal effect of 

caffeine intake on insomnia? 

Counterfactual learning 

P(Y ∣ x’, y’) 

Imagining What would have been Y 

under X = x, given that we 

have 

observed Y = y’ under X = 

x’? 

Would a patient suffer 

insomnia if he/she takes 

caffeinated drinks, given that 

the patient does not suffer 

from insomnia and has never 

taken insomnia? 

 

The crucial epoch in causal graph formulation is to achieve independence or d-separation among the 

variables in the graph and to achieve causal effect in observational data. This implies that two nodes, X and 

Y, are conditionally independent given a set of node(s) Z when Z blocks all open paths that connect X and Y.  

Basically, the concept of d-separation in causal graph is to control the information flow in a graph with a 

view for each variable to achieve independence. In other words, (in) dependence in the graph is a function of 

open or closed paths between nodes in this graph. It is expressed that two nodes in a causal graph or the 

directed acyclic graph (DAG) G are d -d-separated when all paths between them are blocked. There are three 

types of d-separation processes in causal graphs: backdoor adjustment, front door adjustment, and 

instrumental variable. Each is used depending on the graph structure. The DAG structure constructed from 

observational data is expected to have satisfied the causal assumptions such as the Acyclicity assumption, 

The Markov assumption, and the causal sufficiency assumption [4], etc. 

 

3. METHODOLOGY 

This study adopted a quantitative research design that bears relevance to statistical knowledge 

discovery and causal model building that serves as a background for machine learning systems in similar 

studies such as [3][9]. The quantitative method that brings about knowledge discovery using the causal graph 

model is a positivist research paradigm [17]. This method helped to address the knowledge discovery process 

involved in converting clinical text in semi-structured medical records into causal knowledge graphs. 

 

3.1. Dataset  

This study used a secondary dataset obtained from one of the major publicly available clinical 

datasets. This dataset consists of the de-identified Inpatient discharge notes collected together from the 

Statewide Planning and Research Cooperative System (SPARCS) in the United States. The details of the 

dataset include patient characteristics, diagnoses, treatments, services, and charges. This dataset consists of 

basic record-level details for the patient discharges. Since the dataset is de-identified, the health information 

is not individually identifiable, and it does not contain records that are protected by health information (PHI). 

The open nature of the dataset available at healthdata.gov allows clinical studies to be reproduced and 

improved in ways that would otherwise be difficult. The dataset contains about 757123 distinct hospital 

admissions for both adults and children and cuts across different races and ethnic divisions. For this study, we 

extracted 15000 samples from the dataset for the causal modelling experiment. The choice of sample size was 

predicated by [21][22] that insufficient sample size is not a uniquely causal problem since it may lead to 

statistical and algorithmic bias. For the details of the dataset, check the data availability section. 
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3.2. Proposed Research Process Model 

This study proposes a causal graph model for knowledge discovery anvalidationon from clinical text 

datasets. The process of achieving the causal discovery goes through some sequence of steps, which are 

preprocessing, knowledge encoding and converting clinical text into causal knowledge, validating the causal 

graph, and providing explanations.  

 

Figure 1 below shows the iterative process for the knowledge discovery (KD) in the Clinical dataset: 

• Preprocessing the datasets through data cleaning, outlier detection, and removal. 

• Extract part of the Clinical dataset that is relevant for the task of patient survival mining and process it 

for the Causal Graph framework through the process of coding and using the ablation technique to 

dispose of clinically irrelevant text or information that is also causally irrelevant [18]. 

• Design a structural Causal graph model Ontology framework from the Clinical discharge dataset.  

• Validate the Assumptions encoded in the structural causal graph Ontology framework from the Clinical 

discharge test dataset using the Conditional Independence Test (CIT) criteria. 

• Test if the causal assumption is established. 

• Design of the algorithm for the CIT validation process. 

 

Figure 1. The process flow chart of the knowledge discovery of clinical text 

3.3. Implementation tools 

The Causal Graph Ontological framework is implemented using three tools, which are: 

• Google Colab notebook: This was used for dataset preprocessing and feature engineering to understand 

the clinical dataset.  

• Digitty package: This package was used to design the causal graph ontological framework and the 

initial causal graph assumptions among the variable Set in the dataset. 

• R programming: This was used as a coding platform for the causal graph assumptions design 

anvalidationon using the Conditional Independence Test (CIT) criteria. The causal graph model 
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assumption and the criteria from the Dagitty package were imported into R alongside the dataset for 

design anvalidationon. 

3.4. Algorithm for the Computation of Causal Graph Model Validation for Clinical Text using CIT 

The step-by-step process of validating the causal graph model of clinical text using the conditional 

independence test (CIT) criteria is shown below. This is essential to show the algorithmic process of how the 

causal graph framework was validated. The algorithmic procedure is important because of the paucity of 

literature on medical causal graph design anvalidationon [6]. 

 

Algorithm 1. Computation of CIT Validation for Patient Survival Prediction in a Clinical Discharge text. 

 

1. Start  

2. Select new CDAG variables   #Variable selection through 

domain and data exploration 

3. Read 𝐶, 𝐷, 𝑇, 𝑎𝑛𝑑 𝑆 𝑓𝑜𝑟 𝐶𝐷𝐴𝐺 𝐶𝐼𝑇.  #Input variables selected for 
causal DAG validation 

 #Variables Declaration:  

 {{C: = Set of confounding variables in the clinical text. 
Where 𝐶 ∈{c1, c2, c3, c4} 
C1 = Gender, C2 = Age, C3 = Disease Severity, C4 = Disease 
Mortality} 

  

          𝐷: = A given disease suffered by a patient.  

        Where 𝐷∈ {0, 1, 2, 3, 4…24} 

  

         𝑇:= treatment or procedure the patient was made to  

        undergo. Where 𝑇∈ {0, 1, 2…319} 

 

        𝑆: = Survival rate of the patient given D, T, X. Where 
        𝑆 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑙𝑎𝑠𝑠 𝑎𝑛𝑑 𝑟𝑎𝑛𝑔𝑒𝑠 ∈ {0, 1} 

 

         # End of declaration  

4. for C: = 𝑐1 𝑡𝑜 𝑐 4  #Confounding variables treated 

as vectors 

5. Compute {P (CDAG CIT)}  

6. Print 𝑝 − 𝑐𝑜𝑟𝑟𝐶𝑜𝑒𝑓, 𝑝 − 𝑣𝑎𝑙𝑢𝑒, 𝐶𝐼 #Output expected are 

probability of correlation 

coefficient which are: 

(p-corrCoef), P-value and 

confidence interval (CI) 

7. Print CDAG_Plot  #Print the CIT graph 

8. C = c1 + 1  

9. if 𝑝 − 𝑐𝑜𝑟𝑟𝐶𝑜𝑒𝑓 =  0, 𝑝. 𝑣𝑎𝑙𝑢𝑒 >  0.05, 𝐴𝑁𝐷 𝐶𝐼 <=  0 for 

CIT values 

#Test the CIT metrics obtained 

             Print “CIT validation confirmed” GOTO step 11 

else 

 

             Print "CIT validation not confirmed."  

10. Repeat steps 2 - 9  

11. End  

 

3.5. Additional Metric of Sensitivity Analysis for Variable Validation 

Shapley value was adopted to identify the impact of each covariate on the accuracy of the model 

prediction. 

 

∅𝑖 =  
P(S ∪ {xi}) − P(S)

(
|C| − 1

|S|
)

                                                                                                                                                  (1) 

The Shapley value presented in Equation (1) was used to model a given set of clinical discharge set 

C and a metric for performance P, such as test accuracy. The Shapley value ∅𝑖 for the different variables C 

was represented. In our experiment, P(S) is denoted as the survival rate prediction accuracy on the test set 

held out in the partition. Intuitively, the Shapley value visualization plot functions such as summary and 

waterfall were used to estimate the sensitivity of feature contribution to the target variable in the dataset. 
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4. IMPLEMENTATION OF THE CAUSAL GRAPH MODEL AND VALIDATION 

The steps for the causal variables coding and extraction, knowledge discovery, causal graph design, 

anvalidationon are shown below in the next subsections. 

 

4.1. Dataset Groupings into Medical Classes for Knowledge Discovery 

 The dataset originally contained thirty-three columns and was grouped into seven related 

subsections for easy identification, knowledge discovery, and modelling. These are (i) Hospital Information - 

(ii) Patient Demography, (iii) Diagnosis, (iv) Treatment, (v) Notes/Reports, (vi) Billing Method, and (vii) 

Cost. The details of the dataset's grouping can be seen in Table 3 below.  

 

Table 3. Dataset class groupings 

Hospital 

Information 

Patients’ 

Demography 

Diagnosis Treatment Notes/ 

Reports 

Billing 

Method 

 

Cost 

 

1.Hospital_Se

rvice_Area 

2.Hospital_Co

unty 

3.Operating_

Certificate_N

umber 

4.Permanent_

Facility_Id 

5.Facility_Na

me 

6.Emergency_

Department_I

ndicator 

 

1.Age_Group 

2.Zip_Code 

3.Gender 

4.Race 

5.Ethnicity 

6.Discharge_Y

ear 

 

 

 

1.CCSR 

Diagnosis 

Code 

2.CCSR_Diag

nosis_Descrip

tion 

3.APR_DRG_

Code     

4.APR_DRG_

Description 

5.APR_MDC

_Code 

6.APR_MDC

_Description 

1.CCSR_Proce

dure_Code 

2.CCSR_Proce

dure_Descripti

on 

3.APR_Medica

l_Surgical_Des

cription 

1.Birth_Weight 

2.Length_of_St

ay 

3.Type_of_Adm

ission 

4.Patient_Dispo

sition 

5.APR_Severity

_of_Illness_Cod

e 

6.APR_Severity

_of_Illness_Des

cription 

7.APR_Risk_of

_Mortality 

1.Payment_

Typology_1 

2.Payment_

Typology_2 

3.Payment_

Typology_3 

1.Total_Cha

rges       

2.Total_Cos

ts 

  

The dataset grouping in Table 3 coalesces the thirty-three columns into seven related classes for 

easy identification and knowledge discovery. Each of the classes described in Table 2 has been graphically 

depicted to show their grouping and relationship in the dataset.  

Figure 2 reveals the data grouping and the number of variables grouped into each class. It also 

shows that the hospital information has no strong relationship with other classes as it relates to modelling the 

data. Therefore, the relationship with other classes was dotted to represent that weak relationship. 

The initial clinical dataset contained 33 variables, which were both numeric and textual datasets. 
This stage involves preprocessing by cleaning and dropping variables or removing records that are not 

relevant for modelling the Clinical dataset to uncover the causal target variables in the dataset, which is 

modelling survival_rate in the dataset. This was done through the ablation technique and clinical language 

modelling, which helps to dispose of clinically irrelevant text or information that is also causally irrelevant to 

the target class [18]. 

 

4.2. Knowledge Discovery through coding, feature engineering for Causal Variables Selection  

The main thrust in causal text extraction is the analyses of text data through coding [20], which is a 

way of reducing the document or dataset into a simpler set of labels, or variables that realign with the causal 

interest. The causal Graph Model (CGM) implemented using Directed Acyclic Graph (DAG) in this study 

presents an attempt to encode the concepts of interest in causal graphs. It is, therefore, context-specific. In 

causal machine learning, directed acyclic graphs (DAGs) are presented here as an intuitive diagram of cause-

effect relationships in the clinical discharge dataset. Therefore, the CGM ontological framework is designed 

based on the domain knowledge of the clinical discharge dataset used in this study.  

To model the Survival_rate in the clinical dataset, the target classes and the variables needed for the 

causal graph modelling were first identified through the process of data exploration and feature engineering 

to generate new knowledge from the dataset. Thus, with the aid of the domain knowledge of the clinical 

dataset through data exploration and feature engineering, the variables labelled Patient_Disposition in the 

notes/report category were found to be valuable in generating another important variable called Survival_rate. 

In the context of the explanation of clinical text column names, Patien_Disposition defines a place where a 

patient retires after being discharged from the hospital, as shown in Figure 3. 
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Figure 2. Data flow of the entire clinical text dataset, with classes, variables, and their Relations 

 

 

Figure 3. Patient Disposition Class Values 

From Figure 4, it was discovered that the Expired label shows the number of patients who died after 

hospital admission. This column was important for identifying and modelling the number of patients who 

survived or died after being admitted to a particular hospital and administered some treatment.  

The process of knowledge discovery produced the target class called the Survival_rate variable from 

the Patient_Disposition variable. Thus, after identifying the target variable, the study proceeded to identify 

the causal variables that could help model the causal relationship for the survival rate label. Therefore, the 

variables that are not needed since they will not provide significant insight into the model target were 
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removed. Those classes of data, such as Hospital_Information, Billing Method, and Cost, were ablated. This 

was done in consultations with clinicians and medical domain specialists. The reason why the ablation 

technique and expert knowledge were needed was to remove some columns that could introduce bias into the 

model [3][8]. 

 

Figure 4. Feature engineering on the Pateint_Disposition column 

Furthermore, the variables needed for further modelling the dataset were narrowed down to seven 

(7). The knowledge discovered from the clinical text was encoded to make an informed decision on the 

number of people that died or survived in the dataset. Therefore, the final variables selected for the model are 

shown in Table 4.  

Table 4. The final variable selected and its descriptions 

S/No Variable Description 

1. Age_Group (AG) The age distribution of the patients 

2. Gender  Sexual identities of patients 

3. APR_MDC_Description All patients refined of Major Diagnostic Categories 

(MDC) description 

4. APR_Severity_of_Illness_Description  All patients refined (APR) the severity of the illness. 

It groups the severity of illness into four. 

5. CCSR_Procedure_Description  Clinical Classifications Software Refined (CCSR) 

procedure description based on international 

classification of Diseases (ICD) 

6. APR_Risk_of_Mortality  This groups the disease mortality level into four 

groups. 

7 Patient_Disposition or Survival_rate A place or setting to which a patient was discharged 

to stay on the day of discharge. 

 

The seven variables causally selected to model the survival_rate from the textual clinical dataset 

were aggregated and represented show graphically to depict the knowledge discovered from the clinical text 

dataset for the causal graph modeling. These were depicted graphically using ontological representation as 

shown in Figure 5.  

Ontology is a theory of logic that seeks to explicitly and specifically represent an idea or a process 

using a framework. Ontological data mining or knowledge discovery applied in this study can help identify 

and understand the specific causal variables needed for the prediction of the survival rate in a clinical text 

dataset [19]. The ontological representations in Figure 5 revealed each variable has a scaffolding level of 

variables representational of knowledge that uncovers the nature of variables perspective, interaction, and 

insights that can inform us on the survival rate in the dataset used in this study [19].  

 

4.2.1. Numeration of the Categorical Variables  

After acquiring the needed variables to model the survival rate of patients admitted to the hospitals, 

the textual variables shown graphically in Figure 5 below were then converted to numeric values, as shown in 

Table 5, through the process of label encoding. This process of converting the textual variables to numeric 

values is important for validating the Causal Graph ontological framework designed from the dataset using 

the conditional independence test (CIT) criteria. 

 

4.3. Causal Graph Model Assumption Design and Formulation Using Discovered Knowledge  

The Causal Graph represented in the Directed Acyclic Graph (DAG) Ontological framework was 

first designed in dagitty applications. The framework can help explain and predict the variable of interest in 

the research which is the Survival rate of patients admitted in the hospitals. Thus, the Causal graph DAG  

ontological framework for the survival rate of patients in the clinical discharge dataset as shown in Figure 6 
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shows the causal relations or interaction between variables such as diseases, treatment, confounders, and 

survival rate. 

 

Figure 5. A data-flow ontological framework of the clinical text dataset survival rate with variables and their 

relations 

Table 5. The converted clinical dataset for CIT validation 

Diseases Gender Age_group Severity Mortality Treatment Survival_rate 

13 1 4 1 0 133 1 

12 0 3 3 2 237 1 

24 0 1 2 2 44 1 

9 1 4 1 1 8 1 

12 0 3 3 2 146 1 

19 1 3 1 3 59 1 

12 0 3 2 2 237 1 

23 1 0 3 2 262 1 

18 1 3 3 3 139 1 

4 0 4 1 3 8 1 

13 0 3 1 1 8 1 

2 1 1 1 2 237 1 

 

From the causal graph in Figure 6, the first variable, Diseases in the graph ontological model, 

represents the patient diagnosis after being admitted to the hospital. The diseases equate to the 

APR_MDC_Description variable from the dataset, which is comprised of 25 different diseases according to 

the International Classification of Diseases (ICD); each patient has one or more of these diseases per hospital 

admission. The second variable, treatment, also known as CCSR_Procedure_Description, measures the 

different procedures or treatments carried out on a patient during hospital admission. There were about 320 

different treatments recorded from the data exploration on the variable treatment. A sample of these were 
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shown annotatively in Figure 5. From domain experts, it was also gathered that treatment mediates between 

Diseases and patient survival_rate in the clinical processes. The Survival_rate variable is a feature engineered 

from Patient_Disposition, which is a variable that shows the state of the patient after the hospital, as shown in 

Figure 4.  

 

 
Figure 6. The Causal Graph Ontological Framework for the prediction of patients’ Survival rate in Clinical 

Discharge Dataset 

 

Moreover, one important variable discovered in the Causal graph, as shown in Figure 6, is the 

confounders. The Confounders are variables such as {Age_Group, Gender, APR_Risk_of_Mortality, and 

APR_Severity_of_Illness_Description}. In causal analysis, Confounders are variables whose presence affects 

other variables in the causal assumptions so that the results do not reflect the actual direct relationship. These 

confounding variables identified from our causal discovery have the potency to affect the Diseases, 

Treatment, and, by extension, the survival rate of patients in the hospital, as shown in Figure 6.  

Therefore, the causal arrowhead points from Diseases to the treatment and then to the survival rate. 

However, the confounder can induce or influence diseases and complicate treatment and the survival rate of 

the patients. In simple notation, The Causal Graph ontological framework depicts the non-parametric 

graphical representations of hypothesized causal relations between the variables represented in the nodes, 

such as Diseases, Treatment, survival rate, and the confounders. The causal graph ontological framework of 

Figure 6 shows the relationships among the variables in the clinical discharge dataset. 

The Directed acyclic graph (DAG) for the assumed patient Surivival_rate causal structure shows 

that Diseases: the exposure, treatment received by the patient: treatment variable, Survival_rate is the 

outcome variable, Confounders is the observed confounding variable. The causal relationship between 
diseases, confounders, treatment, and survival rate is potentially nonlinear. 

From the hypothesized design of the Causal graph ontological framework of the Clinical Discharge 

Dataset Survival rate in Figure 6, we encoded or formulated the reality from the clinical discharge dataset 

mapped into the causal model that implies the following conditional independences and assumptions:  

 

𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑠   ⊥   Survival_rate | Confounders, Treatment                                                                                        (2) 

 

Equation (2) interprets diseases as independent of survival_rate given or conditioned on confounders 

and treatment. Simply put, that a person is sick does not equal surviving or dying unless you consider other 

factors such as confounding variables and the treatment administered. Where, Confounders = {Age_Group, 

Gender, APR_Risk_of_Mortality, and  APR_Severity_Description}. 

The symbol “⊥” or "_||_", as shown in equation 3, stands for independent of, and “|” stands for, 

given or conditioned on. 

However, from the Causal graph, there was a biasing path that was opened by the Confounders that 

requires minimal adjustment sets for controlling or conditioning the information flow in the graph and for 

estimating the total effect of Diseases on Survival_rate given other variables. Therefore, conditioning or d-

separation is necessary for blocking paths between (sets of) nodes in a causal graph produced by 

confounders. Therefore, we conditioned on confounders by using a backdoor adjustment method operation to 

implement independence.  

The d-separation method is sufficient to identify the estimand, also known as the mathematical 

formula for adjusting covariates and estimating the causal impact of the intervention by using the do-action 
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formula, i.e. (𝑦|(t)). We perform an intervention on the [Confounders- (𝑦|(confounders))]  as in Figure 8 

above to block the backdoor paths. Therefore, the d-separation on the confounders to eliminate the 

confounding bias produced the following equations, assumptions, or mathematical formulas for testing the 

encoded model using the Conditional Independence Test (CIT). This implies: 

 

𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑠   _||_ Survival rate | Gender, Treatment                                                                                                    (3) 

 

𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑠   _||_ Survival rate | Age_group, Treatment                                                                                             (4) 

𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑠   _||_ Survival rate | Severity_of_illness, Treatment                                                                              (5) 

 

𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑠   _||_ Survival rate | Risk_of_mortality, Treatment                                                                                (6) 

 

4.4. Causal Graph Model Validation Result Interpretations 

In this study, the identified causal assumptions of patient survival in equations (2) (3) (4) (5) (6), 

which were obtained from the causal graph ontological framework in Figure 8, were used alongside the 

dataset to perform the conditional independence test (CIT). The overarching objective of testing the causal 

diagram or knowledge discovered is to confirm or reject the CIT assumptions encoded and identified in the 

Causal graph ontological framework. The results of the causal graph assumptions obtained from equations 

were validated and shown in Table 6.  

 

Table 6. Results of the CIT criteria for each instance of confounders using the equations 

Confounders CIT Criteria LocalTest Estimate 

 

Confidence Interval 

p-coefficient p.value 2.5% 97.5% 

Gender Dsss _||_ Srv_ | Gndr, Trtm 

 

0.005141721 0.5289365 -0.02114432 0.01086351 

Age_Group Dsss _||_ Srv_ | Ag_G, Trtm 

 

-0.08660599 0.08177213 -0.1024691 -0.07069977 

Severity Dsss _||_ Srv_ | S_I, Trtm 

 

-0.01353112 0.09751101 -0.02952907 0.002473756 

Mortality Dsss _||_ Srv_ | R_M, Trtm 

 

-0.002604563 0.7497719 -0.01860813 0.01340034 

 

The results of thvalidationon of the causal graph ontological framework revealed that the Pearson 

correlation coefficient estimates are within the range of 1 to -1 and close to the zero mark, with a very narrow 

confidence interval (CI) measured at 25% and 95%. Secondly, the p-values are above the 0.05 (>0.05) 

threshold as indicated in the evaluation metrics in Table 7.  

 

Table 7. CIT Criteria Metrics 

Metrics Lower bound Upper bound 

Pearson correlation 

coefficient estimates 

-1 1 

p-value >0.05 1 

Confidence interval (CI) 25% 97% 

These results validate the assumption proposed in equations (2) (3) (4) (5) (6) coined from the causal 

diagram in Figures 5 and 6. This shows that the conceptual model of the clinical discharge dataset for patient 

survival holds as reflected in the Causal graph ontological framework in this study. Otherwise, there will be a 

need to redesign the causal relationships from the dataset again, as indicated in the iterative structure in 

algorithm 1 in section 3.4.  

 

4.5. Sensitivity analysis using Shapley Values 

Sensitivity analysis was implemented with XGBOOST to predict the survival rate of patients in the 

clinical discharge text. The prediction was made on the unseen partition of the dataset; the initial predictive 

accuracy using XGBOOST was 93.90%. Moreover, we estimated the impact of the variables on the survival 



ISSN: 2583-6250         Prisma Publications 

 

Int. J. of DI & IC, Vol. 4, No. 1, March 2025: 30-44  42 

rate prediction from the clinical discharge text using shapely values on the 100th observation from the 

dataset. The impact of the variables is shown in Figure 7. 

 
Figure 7. Variation of the feature impact on patient survival rate 

 

In addition, we used the waterfall function of the Shapley values to quantify the impact of the 

features on the prediction; the result is shown below in Figure 8. 

 
Figure 8. The positive and negative impact of the features on the patient survival rate 

 

4.6. Discussions 

This study created a niche in causal graph model ontology to extract causal variables from clinical 

text and explain the representation in medical terms. Ontology is a theory of logic that seeks to annotate 

explicitly and specifically represent an idea or a process using a framework [19]. Ontological data mining or 

knowledge discovery conceptualized in this study can help identify and understand the specific causal 

variables needed for the prediction of the survival rate of patients in a clinical text dataset, as shown in 

Figures 4 and 6. This study harnessed the rich graphical and logical representational knowledge inherent in 

ontologies to uncover the nature of variables perspective, interaction, and insights that can inform the patient 

survival rate in the textual clinical dataset used in this study.  

The variation of Causal graphs called directed acyclic graphs (DAGs), used in this study serve as a 

powerful tool for causal assumptions modelling, design validation on, and visualizing the causal relationships 

between various medical entities, such as diseases, treatments, confounders, and survival of patients. This 

graphical and analytical synthesis of knowledge from clinical texts using DAG is crucial for promoting 

clinical decision-making and understanding of causal variables' interactions in clinical care. The overarching 

objective of testing the causal diagram or knowledge discovered is to confirm or reject the assumptions 
identified and encoded in the Causal graph ontological framework. The CIT metrics, as provided by [16], 

show that our patient survival assumption based on data in the clinical discharge dataset is based on the CIT 

validation results. Therefore, it is logical to suggest that our initial causal assumption: Diseases ⊥ 

Survival_rate | Confounders, Treatment in our causal model estimation which is interpreted as Diseases is 
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independent of Survival_rate given or conditioned on Confounders and Treatment should be correct for 

patient survival estimation and medical decision reasoning. 

Moreover, we further carried out a sensitivity analysis on the covariates to uncover the contributions 

of the variables on the target variable and identify biases in the dataset using Shapley values. Our experiment 

showed that variables such as diseases and gender contributed the least to the prediction, as shown in Figure 

7. However, the predictive accuracy of the model reduced from 93.90% to 91.91% when we removed the 

assumed biased variables such as gender and diseases. Therefore, the result of our research further suggested 

that those variables contributed to the prediction, though estimated to be small compared to the other 

variables.  

 

5. CONCLUSION  

The construction of causal graphs from clinical texts involves a series of approaches that integrate 

text analysis and causal knowledge graph methodologies. The ongoing research in this domain aims to refine 

these techniques to improve the accuracy and utility of causal graphs in clinical settings. The application of 

causal graph design and validation for variable selection in clinical settings is crucial to delineating important 

variables in ever-growing electronic health records to make causal clinical decisions. However, 

computational complexity must be considered in model design, validation analysis, and potential variable 

biases in the framework. For future studies, this study suggests the data from the causal graph assumption 

validated in this study can be simulated as a synthetic dataset to predict patient survival rates prediction in 

clinical text using other natural language predictive algorithms. This will help build predictive models based 

on causation and not on correlation, which is common in most machine-learning predictive models. 

Sensitivity analysis should also be conducted to select important causal variables for a causal framework.  
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