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 Worldwide, a large number of people suffer from the bone disease 

osteoporosis. Accurate diagnosis and classification are essential for managing 

and preventing many disorders. In order to classify bone density images into 

two categories—normal and osteoporotic—this study suggests a hybrid 

model that combines a multiclass Support Vector Machine (MSVM) with a 

Deep Convolutional Neural Network (DCNN). The bone density pictures are 

subjected to feature extraction by the DCNN, and the information is then 

classified into two categories using the MSVM. The National Health and 

Nutrition Examination Survey (NHANES) database's dataset of bone density 

photos was used to train and evaluate the suggested hybrid model. According 

to the results, the ensemble model performs better than the most advanced 

methods available today in terms of F1 score, sensitivity, accuracy, and 

specificity. According to our research, osteoporosis may be efficiently 

classified by the DCNN and MSVM ensemble model, which can help with 

the diagnosis and treatment of various bone disorders. The proposed model 

gives better performance in terms of accuracy of 0.8913 and specificity of 

0.9123 when compared to other models. Thus, a deep-learning diagnostic 

network applied to lumbar spine radiographs could facilitate screening for 

osteoporosis.  
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1. INTRODUCTION  

The disorder known as osteoporosis weakens bones, leaving them brittle and easily broken. This 

results from an excessive loss of bone mass, insufficient production of bone mass, or both. While 

osteoporosis can damage any bone, the spine, hip, and wrist are the most commonly affected, and it usually 

proceeds slowly. Because there are no symptoms until a fracture happens, it is frequently called the "silent 

disease". Males and females can equally suffer from osteoporosis disease, but women are more inclined to 

have it, particularly after menopause. A family history of osteoporosis, smoking, heavy alcohol use, being 

underweight, leading a sedentary lifestyle, and using specific drugs or medical conditions are risk factors. 

Regular exercise, a diet high in calcium and vitamin D, and abstaining from smoking and excessive alcohol 

are just a few examples of lifestyle modifications frequently included in treatment. Medication may be 

recommended to reduce bone loss or improve bone density. 

In September 2021, a bone mineral density (BMD) test will be the accepted approach for diagnosing 

osteoporosis. A T-score is generated by comparing the results of bone mineral density (BMD) tests—which 

commonly evaluate the concentration of minerals in the hip, spine, and wrist—to the average BMD of a 

young adult who is healthy and of the same sex and race. A T-score of -1.0 or higher shows normal bone 

density, a T-score of -1.0 to -2.5 indicates poor bone density, and a T-score of -2.5 or lower suggests 

osteoporosis (very low bone density), according to the World Health Organization (WHO). However, the T-

score is just one factor in assessing fracture risk due to osteoporosis. Other factors such as age, sex, medical 

history, family history, and lifestyle choices (e.g., smoking, alcohol use, physical activity) also contribute to 

the overall risk. It's important to discuss your personal risk factors and the appropriate screening schedule 
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with your healthcare provider. New research or updated clinical guidelines may eventually lead to changes in 

the standards for identifying osteoporosis disease.  

Deep learning algorithms can be employed to classify osteoporosis disease, a condition that affects 

bone health. Low bone density and bone tissue degeneration are hallmarks of osteoporosis disease, which 

leads to brittle bones that are more likely to break. Deep learning models are highly effective tools for 

diagnosing medical conditions like osteoporosis. These models use neural networks to recognize patterns in 

medical images, such as bone density scans, and can accurately predict whether a patient has osteoporosis or 

normal bone density. To develop a deep learning model for classifying osteoporosis disease, medical images 

from bone density scans can be used as input data. The model can be trained on a large dataset of bone 

density scans, with labels indicating whether each scan shows osteoporosis or normal bone density. By 

analyzing these scans, the model can learn to identify patterns and features that distinguish between these 

classifications. Once trained, the model can be used to classify new bone density scans as either showing 

osteoporosis or normal bone density. This can help medical professionals accurately diagnose patients and 

create treatment regimens that work for them. 

The new gold standard for diagnosing osteoporosis is central dual-energy X-ray absorptiometry 

(DXA) [1]. However, the use of DXA is limited by accessibility issues, often requiring patients to visit 

specialized centres [2]. Reduced financial incentives and a lack of knowledge about the test are two more 

obstacles to DXA screening. Therefore, the percentage of Chinese women over 50 who have had a DXA test 

is just 4.3% in rural regions, the number is as low as 1.9% [3]. About half of female Medicare enrollees in the 

United States do not get tested, and screening rates are only about 10%, even in high-risk areas [2]. DXA 

imaging primarily assesses the presence of bones and muscles, which are often affected by fat [4]. 

Furthermore, DXA is only able to partially account for the size, form, and microstructure of bones due to its 

use of a two-dimensional projection approach. As a result, osteoporosis may not be accurately diagnosed, and 

DXA remains underutilized. To change these conditions, safe and reasonably priced alternatives are required. 

In hospitals worldwide, conventional X-ray technology is commonly available and can yield data regarding 

bone mineral density (BMD). Retrospective analysis of BMD data from lumbar spine X-ray pictures obtained 

for other purposes could be done at no additional cost or radiation exposure to patients. In general, this could 

lead to a rise in the number of people tested for osteoporosis. However, visually assessing BMD on lumbar 

spine X-ray images can be challenging. 

Deep Convolutional Neural Networks have been extensively used in medical imaging, including the 

classification of osteoporosis disease based on bone density scans. To train a DCNN model for osteoporosis 

classification, a large dataset of bone density scans with corresponding T-scores is necessary. The model is 

trained to recognize features in the scans associated with low bone density and specific T-score categories 

(normal or osteoporosis). Many convolutional layers, pooling layers, and fully connected layers are the next 

layers seen in a typical DCNN model. The pooling layers assist in reducing the dimensionality of the data, 

while the convolutional layers utilize the bone density scans to identify features such as patterns of bone loss 

or areas with decreased density. Finally, the completely connected layers carry out the classification. Once 

trained, the DCNN model can be used to predict the T-score category of a new bone density scan by 

processing the scan through the model and obtaining the predicted category. 

Deep Convolutional Neural Networks (DCNNs), a kind of deep learning system, have advanced 

computer vision significantly in recent years. Through several levels of abstraction, deep learning approaches 

gradually create feature representations by processing raw image pixels and associating them with 

appropriate labels from medical imaging data. With continuous advancements in DCNN architecture and the 

growing power of hardware, DCNNs have achieved human-level performance in tasks such as face 

recognition, video game playing, and natural language processing [5]. The potential advantages of DCNNs 

have also been demonstrated in numerous preliminary studies across various medical imaging fields, 

including radiology [6], pathology [7], dermatology [8], and ophthalmology [9]. 

 

2. RELATED WORKS 

There are several challenges associated with using machine learning methods to detect osteoporosis, 

including the fact that the process is typically divided into two phases: the feature selection phase and the 

classification phase. However, as demonstrated in further testing, the suggested deep learning-based method 

not only automates feature extraction and categorization but also exhibits superior classification accuracy 

when assessed using both T-scores and Z-scores. Additional advantages of this approach include reduced 

classification time and lower error rates. 

Various deep learning algorithms contribute to improving learning efficiency by expanding the 

range of potential applications and accelerating computational processes. However, the extended training 

times of deep learning models remain a significant challenge for researchers. Increasing the number of model 

parameters or the amount of training data can also greatly improve classification accuracy [10]. To address 

these challenges, the literature has introduced several state-of-the-art techniques to speed up deep learning 
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processing. Deep learning frameworks integrate modular algorithms with infrastructure support, distribution 

strategies, and optimization techniques. These frameworks are designed to accelerate system-level 

development and research while simplifying the implementation process. This section highlights some of 

these notable frameworks and methods. 

A Convolutional Neural Network (CNN) was developed to classify osteoporotic and normal 

vertebral bodies using lateral radiographs, achieving an accuracy of 92.2% in distinguishing between the two 

[17]. Another study utilized a deep learning model based on a modified VGG-16 network to detect and 

classify osteoporotic vertebral fractures on CT images. This model reached an accuracy of 94.2% in detecting 

osteoporotic fractures and 92.7% in classifying [10]. The use of deep learning algorithms in the automated 

diagnosis of osteoporosis is summarized in a review article [11], discussing various models such as CNNs, 

Recurrent Neural Networks (RNNs), and hybrid models. A systematic review assessed the performance of 

deep learning models in detecting osteoporotic fractures in CT images, finding that these models achieved 

high accuracy and could potentially be used for automated fracture detection [12]. Another study evaluated 

the effectiveness of machine learning models in predicting osteoporosis, showing that these models also 

achieved high accuracy and could serve as tools for early diagnosis and prevention [13][25]. 

Numerous studies have explored the use of Deep Convolutional Neural Networks and Multiple 

Support Vector Machines for classifying medical datasets. Here are some relevant works: DCNN has been 

employed for the classification of medical images, achieving state-of-the-art performance across various 

datasets, including retinal fundus images, mammography images, and brain MRI scans [14]. MSVM has been 

used to classify breast cancer histopathological images using local binary patterns and multiple kernel 

learning [15], with results showing that MSVM achieved high accuracy and outperformed other classification 

methods. A comparison of DCNN and MSVM for breast cancer histology image classification revealed that 

DCNN had superior classification accuracy. Another study combined DCNN and MSVM for lung cancer 

screening using CT images, successfully detecting lung nodules with high accuracy [16]. Additionally, 

research on classifying brain tumour MRI images found that DCNN outperformed MSVM in terms of 

accuracy. These studies highlight the potential of DCNN and MSVM in the classification and identification 

of medical images across various fields, including breast cancer, lung cancer, and brain tumours. 

Model parallelism, in contrast, distributes the training process across multiple graphics processing 

units (GPUs). In a basic model-parallel approach, each GPU handles a portion of the model's processing. For 

example, in a system with two GPUs, one might be used to compute each of the LSTM layers if the model 

includes two, thereby speeding up overall computation. This approach enables the training and prediction of 

large-scale deep neural networks [17]. For instance, a COTS HPC system was employed to train a neural 

network with over 11 billion parameters, requiring more than 82GB of memory. Model-parallel methods are 

crucial when fitting a large model onto a single processor is challenging, necessitating the division of the 

model [18]. Since each node in a model can only compute part of the results, synchronization is required to 

gather the complete set of results [19]. However, because each node must synchronize gradient or attribute 

data at each update step, a model-parallel strategy incurs higher synchronization and communication costs 

than a data-parallel strategy, leading to scalability issues. Google proposed a deep reinforcement learning-

based solution for autonomous device placement to optimize model partitioning and placement strategies 

[20]. This approach claims to boost performance by 60% compared to relying solely on human experts by 

combining processes based on their embedded representation. Due to the accurate detection of bone 

deterioration in femoral data, as indicated by BMD values [21], osteoporosis is recognized as a condition 

where bone breakdown exceeds bone synthesis, resulting in porous bones. Although several studies have 

focused on diagnosing osteoporosis, significant knowledge gaps remain due to the widespread nature of the 

condition [22]. Most studies found in the literature used basic datasets to support hypotheses proposed by 

researchers investigating the identification of osteoporosis [23]. 

The study using the classifier demonstrates that sequentially trained Deep Convolutional Neural 

Networks (DCNN) can be employed to classify osteoporosis. The objective of the DNN optimization method 

is to identify the network parameters that minimize the loss function. Section 3 discusses additional datasets 

and the primary implementation techniques. 

 

3. MATERIALS AND METHODS 

The methods section will provide a detailed description of the materials used in the study, including 

how they were prepared, along with an explanation of the research methodology employed. 

3.1. Osteoporosis Dataset 

This study compares the outcomes to DXA-defined BMD measures to assess the viability and 

efficacy of diagnosing osteoporosis disease in postmenopausal women using DCNN projections based on 

lumbar spine X-ray images obtained for various clinical objectives [27]. Deep learning could serve as a 
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practical and cost-effective supplement to DXA screening, particularly in medical centres where DXA 

equipment is limited. The sample data, along with attributes and descriptions, are shown in Table 1. 

 

Table 1. Sample Data with its Attributes and its Description 

Age 
Height 

(cm) 
Weight (kg) BMI 

C.Width 

(mm) 
C.FD 

Tr. thick 

(mm) 
Tr. FD Tr. Numb 

Tr. separa 

(mm) 

62 153 55.15 23.4 1.73 0.87 0.13 0.22 2.14 0.71 

60 182 76.82 23.13 3.76 0.54 0.22 0.15 2.05 0.5 

72 152 68.94 29.75 2.32 0.87 0.2 0.3 2.18 0.61 

65 183 72.85 21.59 4.19 0.38 0.18 0.44 2.44 0.53 

80 152 80.2 34.68 3.08 0.59 0.13 0.17 2.38 0.26 

60 150 75.11 33.06 3.9 0.46 0.23 0.33 2.14 0.55 

65 177 76.99 24.33 4.44 0.62 0.09 0.11 2.17 0.28 

57 189 74.32 20.61 4.02 0.4 0.1 0.59 1.39 0.52 

53 185 70.45 20.39 4.1 0.8 0.15 0.18 1.33 0.67 

89 173 88.59 29.59 2.72 0.81 0.1 0.27 1.94 0.66 

53 186 50.61 14.52 3.16 0.87 0.24 0.11 1.22 0.73 

74 150 79.92 35.42 2.26 0.39 0.22 0.36 1.83 0.28 

52 189 78.28 21.91 2.09 0.67 0.12 0.6 1.47 0.72 

81 169 85.81 29.82 3.02 0.58 0.18 0.34 1.65 0.45 

 

Bone mineral density, fractures, falls, and other clinical parameters in older men are all being 

gathered for the Osteoporotic Fractures in Men Study (MrOS), a longitudinal study. Through the Biologic 

Specimen and Data Repository Information Coordinating Center (BioLINCC) of the National Institutes of 

Health, this dataset is available to the public. A cross-sectional study called the National Health and Dietary 

Examination Survey (NHANES) collects information on a range of dietary and health-related topics, 

including bone health. The general public can access it through the Centers for Disease Control and 

Prevention (CDC). The Study of Osteoporotic Fractures (SOF) is another longitudinal study that focuses on 

bone mineral density, fractures, and other clinical measures in older women, with data available through the 

National Institute on Aging (NIA). The National Heart, Lung, and Blood Institute (NHLBI) offers 

information about the Framingham Osteoporosis Study, a longitudinal investigation that gathers data on bone 

mineral density, fractures, and other clinical variables in older men and women. Additionally, the UK 

Biobank is a large-scale prospective study that gathers data on various health-related factors, including bone 

health and is accessible to researchers who apply for and receive approval from the UK Biobank Access 

Committee. These datasets are valuable resources for osteoporosis research and have been utilized in studies 

to develop and validate diagnostic and predictive models. 

3.2. Proposed Architecture  

Bone mineral density (BMD) measurements are a frequent method used in the building of a 

classification system for osteoporosis disease. As a measure of bone strength, BMD measures the amount of 

minerals present in bone tissue. A potential design for an osteoporosis classification system based on BMD 

might include the following criteria: 

• Normal BMD: Within one standard deviation (SD) of the average BMD for a reference group of young 

adults. 

• Osteopenia: BMD that is between one and 2.5 standard deviations below the mean BMD of the young 

adult reference sample. 

• Osteoporosis: BMD greater than 2.5 SD lower than the reference group's mean BMD of young adults. 

Additionally, the following subcategories could be part of the classification system: A BMD that is 

more than 2.5 SD lower than the mean BMD for the reference group of young adults, and one or more 

fragility fractures are indicators of severe osteoporosis. In addition to one or more variables that raise the risk 

of fracture, osteoporosis is defined by a BMD that is more than 2.5 SD lower than the mean BMD for young 

people. A bone fracture history or other medical factors that raise the risk of fracture are combined with a 

BMD that is one to 2.5 SD lower than the reference group's mean BMD to be classified as high fracture risk. 

Low bone mass is characterized by a BMD between 1 and 2.5 SD below the mean BMD for young adults 

without a history of fractures or other medical risk factors for fractures. The flow chart of patient inclusion to 
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enhance the classification of osteoporosis disease is shown in Figure 1. This classification system helps guide 

clinical decision-making, but it's important to remember that BMD is not the sole determinant of fracture 

risk; other clinical risk factors should also be considered when making treatment decisions. 

 

 
Figure 1. Flowchart of patient inclusion in a multi-centre study. This network architecture uses direct layer-

to-layer connections to bypass layers, improve feature transmission, and enhance data flow integration [30]. 
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3.2.1. X-rays of the lumbar spine 

Lumbar spine X-rays are not the most reliable way to detect osteoporosis disease, as these 

conditions primarily affect bone density, which standard X-rays cannot detect [24]. However, lumbar spine 

X-rays can help identify fractures or structural changes in the bone that may indicate osteoporosis. For 

instance, individuals with osteoporosis might have compression fractures in their vertebrae visible on X-rays. 

X-rays can also be used alongside other diagnostic tests, such as bone density scans, to aid in diagnosing 

osteoporosis. Compared to X-rays, bone density scans, such as dual-energy X-ray absorptiometry (DXA), are 

more accurate and sensitive to identifying changes in bone density [26]. Early detection and treatment of 

osteoporosis are crucial for preventing fractures and other complications.  

The two channels intended to examine lateral (LAT) or anterior-posterior (AP) lumbar vertebra 

pictures make up the recently established CNN classification model. The basic structure of both channels is 

the same as it was designed to be. DenseNet, a feed-forward network where every layer is connected to all 

subsequent layers, was utilized to extract features. This network architecture incorporates direct connections 

between each layer and the layer below it, which helps bypass connections, enhance feature transmission, and 

facilitate data flow integration. Each layer receives the image features from all preceding layers as input and 

passes its generated features to the subsequent layers. This design greatly minimizes the data processing 

needed, solves the vanishing-gradient issue, improves feature transmission, and encourages feature reuse., as 

illustrated in Figure 2. 

 

 
Figure 2. Architecture for the proposed model 

 

We developed a 3-class CNN model to categorize images based on AP, LAT, or AP+LAT views, 

addressing the three-category classification task. Each scenario utilized a single network with two channels. 

To evaluate the effectiveness of the classification models, we randomly divided a total of 5,652 participants 

into training and validation sets in an 8:1 ratio. Furthermore, as separate test cohorts from the training 

cohorts, 600 patients from a different subdistrict and 600 participants from a second partner institution were 

involved. The models were developed using the training cohort; hyperparameters and the ideal model were 
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chosen using the validation cohort, and the models' correctness was assessed using a test cohort. Patients 

were categorized into groups according to their osteoporosis levels and normal bone density using the 

proposed model. In order to determine whether adding clinical parameters (gender, age, and BMI) to the 

picture data could improve the CNN model's performance. 

3.2.2. Statistic evaluation  

Deep Convolutional Neural Networks (DCNN) and Multiclass Support Vector Machines are 

integrated into this hybrid data model. (MSVM) can be structured as follows: 

• Data Preprocessing: The input data is preprocessed to extract pertinent features for both the DCNN and 

MSVM models. This step may include normalization, data augmentation, and feature selection 

techniques. 

• DCNN Model: The preprocessed data is input into the DCNN model to extract high-level features. The 

DCNN learns representations that the MSVM model will employ through extensive dataset training. The 

DCNN’s output is then flattened and provided as input to the MSVM model. 

• MSVM Model: The flattened output from the DCNN model is fed into the MSVM model, which is 

trained to classify the data into multiple categories. The MSVM model can be fine-tuned using a smaller 

dataset to enhance its performance. 

• Ensemble: The results from both the DCNN and MSVM models are combined using an ensemble 

method. This could involve averaging the probabilities from both models or using a weighted average to 

prioritize one model over the other. 

• Evaluation: Common criteria, including accuracy, precision, recall, and F1 score, are used to evaluate the 

efficacy of the hybrid model. The performance of the hybrid model may also be compared with other 

advanced models to evaluate its efficacy. 

3.2.3. DCNN Model Architecture 

A Deep Convolutional Neural Network (DCNN) can be utilized to detect features in the input 

image. The architecture of the DCNN model may be structured as follows: 

Input Layer: The preprocessed image is fed into the input layer of the DCNN model. 

Convolutional Layers: These layers process the image via several filters in order to retrieve relevant 

information.   

Pooling Layers: The feature maps produced by the convolutional layers are less dimensional through pooling 

layers.  

Activation Function: Non-linearity is introduced by applying an activation function to the convolutional and 

pooling layers' outputs. 

Fully Connected Layers: Classifying an input image is done by these layers using the features that have been 

extracted. 

3.2.4. MSVM Model Architecture 

The Multiclass Support Vector Machine (MSVM) model is intended to classify the input image into 

various categories. Its architecture is structured as follows: 

Input Layer: The DCNN model's flattened output is fed into this layer. 

Support Vector Machine: The SVM component learns to classify the input image into multiple classes based 

on the features extracted by the DCNN model. 

Ensemble Architecture: The results from both the DCNN and MSVM models are combined using an 

ensemble technique. This may involve averaging the probabilities from each model or applying a weighted 

average to emphasize one model over the other. 

The DCNN and MSVM model offers a robust framework for image classification tasks. By 

leveraging the strengths of both models, this hybrid approach can enhance the accuracy and reliability of the 

classification process. The architecture of the model can be tailored and fine-tuned based on the specific 

dataset and task requirements. 

 

Algorithm 

Here's a pseudo-code algorithm for DCNN and MSVM models -: 

DCNN Algorithm: 

Input: Preprocessed image data 

Output: Features extracted by the DCNN model 
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1. Load pre-trained DCNN model 

2. For each image in the dataset:  

a. Feed the image through the DCNN model  

b. Flatten the output of the DCNN model  

c. Store the flattened output as features for the image 

3. Return the extracted features for all images 

 

MSVM Algorithm: 

Input: Features extracted by the DCNN model 

Output: Classification results for the input data 

1. Train the MSVM model using the extracted features and the corresponding labels 

2. For each image in the test set:  

a. Feed the flattened output from the DCNN model as input to the MSVM model  

b. Use the MSVM model to classify the image into one of the predefined classes  

c. Store the classification result for the image 

3. Return the classification results for all images in the test set 

 

Note: The aforementioned approach relies on the assumption that MSVM models is a multiclass SVM that 

can divide the input data into many classes. If the SVM model is a classification method, it may be trained to 

divide the input data into several categories using a one-vs-all method. 

 

DCNN A kind of neural network frequently employed in image identification applications is the 

(Deep Convolutional Neural Network). The basic equation for a convolutional layer in a DCNN as shown in 

equation (1). 

 

𝑦(𝑖, 𝑗, 𝑘) = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑏(𝑘) + 𝑠𝑢𝑚 (𝑠𝑢𝑚 (𝑠𝑢𝑚(𝑥(𝑝, 𝑞, 𝑟) ∗ 𝑤(𝑖 − 𝑝 + 1, 𝑗 + 𝑞 + 1, 𝑟, 𝑘))))) (1) 

 

Where w is the weight matrix, b is the bias term, y (i, j, k) is the output at position (i, j) in channel k, 

and x (p, q, r) is the input at position (p, q) in channel r. Any nonlinear function, such as the Rectified Linear 

Unit (ReLU), can be used as the activation function. 

A well-liked machine learning technique called SVM is utilized for regression and classification 

applications. The basic equation for a linear SVM is shown in equation (2). 

 

𝑦(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏)                                       (2)

   

Where w is the weight vector, b is the bias term, and sign is the sign function that returns +1 for 

positive values and -1 for negative values. y(x) is the projected class label for input x. By minimizing a loss 

function while keeping in mind a constraint that maintains a margin of separation between the classes, the 

weight vector and bias term are learned during training. 

One-vs-all (OVA) or one-vs-one (OVO) techniques can be applied to the multiclass category. Every 

class in OVA has its own SVM trained for it, and the class that produces the greatest SVM output is chosen 

as the prediction during testing. For every pair of classes in OVO, a single SVM is trained, and during 

testing, the class that receives the most votes from the SVMs is chosen as the forecast. A hybrid model that 

combines a Deep Convolutional Neural Network (DCNN) and a maximum margin support vector machine 

(MSVM) can be formulated as follows: 

Let x be the input data, y be the ground truth label, and f(x) be the output of the DCNN. The output 

of the hybrid model can be represented in equation (3). 

 

𝑔(𝑥) = 𝑠𝑖𝑔𝑛(𝑤. 𝑓(𝑥) + 𝑏)                                                        (3)

      

Where w and b are the weight vector and bias term learned by the MSVM. The sign function is used 

to map the output to a binary prediction. To train the hybrid model, we first pre-train the DCNN on a large 

dataset using unsupervised learning, such as the autoencoder or denoising autoencoder. Then, we fine-tune 

the DCNN on the task-specific dataset using supervised learning, such as the softmax regression or multi-task 

learning. Finally, we use the fine-tuned DCNN as a feature extractor and train the MSVM on the extracted 

features to obtain the weight vector and bias term. The hybrid model can achieve better performance than 

either the DCNN or the MSVM alone by leveraging the strengths of both models: the DCNN can learn high-

level features from raw data, while the MSVM can learn a discriminative decision boundary between the 

classes. 
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4. RESULTS AND DISCUSSION  

The outcomes of the CNNs for LS x-ray data used to detect osteoporosis are displayed in Table 1. 

The model was based on the Anterior-Posterior + Lateral channel for diagnosing osteoporosis and performed 

best among the validation cohort and the two test cohorts, with just an AUC range from 0.894 to 0.993, a 

specificity range from 79.98% t- 88.45%, a specificity range from 82.54% - 86.63%, as well as a negative 

prediction accuracy range from 90.08% - 91.15%. evaluating the ROC curves of CNN models with 

individual and coupled image algorithms (Figure 3). The percentage of false-positive, true-positive, true-

negative, & false-negative outcomes is provided by the classification confusion metrics of approaches that 

rely on the AP+LAT channel, which are displayed in Table 2. 

 

Table 2. Outcome CNN model for detecting osteoporosis based on metrics 

Datasets 
Image 

projection 

AUC (95% 

CI) 

Sensitivity 

(%) 

Specificity 

(%) 
PPV (%) NPV (%) 

Training AP 0.995 

(0.993–

0.997) 

99.95 

(99.62–100) 

99.93 

(99.75–99.98) 

99.89 

(99.53–

99.97) 

99.96 

(99.82–

100) 

LAT 0.995 

(0.993–

0.997) 

99.95 

(99.62–100) 

99.96 

(99.82–100) 

99.95 

(99.62–

100) 

99.96 

(99.82–

100) 

AP and LAT 0.965 

(0.960–

0.970) 

89.98 

(88.43–91.38) 

90.02 

(88.95–91.01) 

81.64 

(79.77–

83.35) 

94.81 

(93.95–

95.55) 

Validation AP 0.905 

(0.878–

0.926) 

82.15 

(76.37–86.81) 

85.65 

(81.76–88.85) 

76.04 

(70.07–

81.18) 

89.65 

(86.06–

92.42) 

LAT 0.888 

(0.862–

0.913) 

75.46 

(69.19–80.84) 

85.65 

(81.76–88.85) 

74.46 

(68.18–

79.89) 

86.27 

(82.45–

89.43) 

AP and LAT 0.938 

(0.915–

0.955) 

84.83 

(79.28–89.11) 

86.64 

(82.84–89.73) 

77.86 

(72.04–

82.82) 

91.16 

(87.74–

93.72) 

Test cohort 

1 

AP 0.889 

(0.861–

0.912) 

81.52 

(75.47–86.38) 

81.77 

(77.66–85.29) 

69.35 

(63.15–

74.95) 

89.74 

(86.13–

92.51) 

LAT 0.912 

(0.886–

0.933) 

80.08 

(73.94–85.14) 

86.08 

(82.30–89.18) 

74.44 

(68.16–

79.87) 

89.52 

(86.00–

92.26) 

AP and LAT 0.932 

(0.908–

0.949) 

82.93 

(77.02–87.61) 

85.84 

(82.04–88.97) 

74.78 

(68.62–

80.10) 

90.85 

(87.46–

93.43) 

Test cohort 

2 

AP 0.891 

(0.863–

0.914) 

80.47 

(74.32–85.47) 

81.11 

(76.93–84.66) 

68.14 

(61.89–

73.81) 

89.20 

(85.53–

92.05) 

LAT 0.873 

(0.844–

0.897) 

73.80 

(67.21–79.50) 

81.35 

(77.21–84.88) 

66.53 

(60.03–

72.48) 

86.09 

(82.19–

89.27) 

AP and LAT 0.908 

(0.882–

0.929) 

81.91 

(75.89–86.74) 

82.53 

(78.47–85.97) 

70.21 

(63.98–

75.76) 

90.09 

(86.54–

92.81) 
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Figure 3. Metrics Analysis for Sensitivity and Specificity 

 

Table 3. Confusion matrices Anterior-posterior and Lateral 

 Valid Process Execution 1 Execution 2 

 Osteoporosis Normal Osteoporosis Normal Osteoporosis Normal 

Osteoporosis 189 1 169 2 186 1 

Normal 5 98 1 124 23 135 

 

Table 1 demonstrates the dataset's partitioning and the final distributions of the test, validation, and 

training sets' individuals, radiographs, and vertebral bodies. The number of SQ vertebral bodies at each 

anatomic level of the spine is shown in Figure 3. The information was collected from the multinational MrOS 

study, which began in 2000. A backup plan is a smart idea in the event that something goes wrong. We are 

now creating more data, such as regional data with radiography, to use more contemporary methods. These 

data have a variety of applications. to assess the generalization of the model or even to create a better model, 

As shown in Table 3. 

Only male participants from six healthcare facilities in the US were intended for the MrOS trial. To 

be sure that this approach can be used on women and people throughout the world, more testing is necessary. 

Further statistics with female participants or foreign content are presently being developed in order to 

examine the generalization of the model & train a more trustworthy model, as per Figure 4. According to 

several studies, the General SQ parameters have limitations for measuring OCFs [28] [29]. As per the Genant 

SQ criteria, subtle anterior wedge-ing correlates with a range of signs which could be misinterpreted as 

slightly OCF. Other OCF classification strategies, such as the improved algorithm-based qualitative method 

[31], are going to be employed in future research. 4.2 Comparison based on customized sequential model, 

proposed model with respect to other algorithms shown in Figure 5. The study may have some other 

drawbacks as well [32].  
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Figure 4. Number of SQ vertebral bodies at each anatomic level of the spine 

 

Table 4. Comparison of Various Algorithms with different Metrics 

 Accuracy Precision Recall Specificity NPV 
F1 

Score 

AUC 

Score 

ResNet18 0.7877 0.8653 0.7257 0.8626 0.7214 0.7896 0.9088 

ResNet34 0.8406 0.8794 0.8227 0.8626 0.7 0.86 0.9204 

GoogleNet 0.8406 0.8928 0.8066 0.8823 0.7896 0.8476 0.9063 

EfficientNet b3 0.8406 0.8928 0.8066 0.8823 0.7896 0.8476 0.9088 

EfficientNet b4 0.8054 0.804 0.8547 0.7452 0.8086 0.8282 0.8787 

Customized sequential 

model 
0.8791 0.9176 0.8527 0.9056 0.8367 0.8766 0.9466 

Ensemble Model 0.8913 0.9456 0.8711 0.9123 0.8389 0.8833 0.9513 

DCNN 0.7923 0.7533 0.812 0.745 0.8085 0.8281 0.8786 

MSVM 0.7811 0.7654 0.6258 0.7627 0.6213 0.6895 0.8089 

 

First, there may have been selection bias because of the retroactive inclusion of participants who had 

matched LS radiographs and DXA tests. Moreover, the impact of cortical, hyperosteogeny, and 

arteriosclerosis sclerosis on the estimation of BMD could not be ruled out by DXA testing (11), which can 

cause an underestimate of real bone density loss. Similarly, how aortic sclerosis, gastrointestinal problems, 

and osteophytic spurs can all impact the proposed technique and cause BMD values to be overestimated, as 

shown in Figure 5. Finally, all ROIs were drawn by hand, which took some time but resulted in rather 

accurate results. Fourthly, this study did not include any women or males under the age of 50. Thus, the 

applicability of our findings to these populations is constrained. The performance metrics, such as Accuracy, 

Precision, recall, etc., of all the algorithms are shown in Figure 5. Here, we have observed that the ensemble 

model gives better results when compared to other models. Last but not least, further research is required 

because the established Deep-learning models could not accurately forecast an individual's risk of fracture 

[32], as demonstrated in Table 4. 
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Figure 5. Performance evolution 

 

5. CONCLUSION 

Deep Convolutional Neural Networks (DCNNs) and Multiclass Support Vector Machines (MSVMs) 

offer promising approaches for classifying osteoporosis. DCNNs, renowned for their image classification 

prowess, can be trained on bone density scans or X-rays to learn intricate patterns and features indicative of 
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healthy and osteoporotic bone. MSVMs, on the other hand, excel at finding optimal hyperplanes to separate 

different classes within a feature space. Training an MSVM on features extracted from bone images can 

effectively distinguish between healthy and osteoporotic conditions. The combined application of DCNNs 

and MSVMs holds significant potential. DCNNs can extract high-level features from images, which can then 

be fed into the MSVM for robust classification. This synergistic approach may enhance classification 

accuracy by leveraging the strengths of both techniques. However, several factors influence the success of 

this approach, including the quality of the training data, the careful selection of features, and the optimization 

of model parameters. Rigorous research and validation are crucial to establish the efficacy and reliability of 

this combined approach for accurate osteoporosis disease classification. Future work may require the 

integration of recurrent neural networks (RNNs) or transformer models with DCNNs and MSVMs for 

improved performance. 
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