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 This study investigates the relationship between prerequisite courses and skill 

acquisition in programming education. It proposes a case study examining 

cognitive, natural language, and mathematical aptitude indicators as 

predictors of programming performance. Analyzing data from 1238 

undergraduate students at Riphah International University, the research 

employs Machine Learning models to predict outcomes, achieving high R2 

scores and low Mean Squared Error rates. A zero-shot text classification 

model identifies required aptitude skills: 62% cognitive, 24% natural 

language, and 14% mathematical. These skills are mapped to predicted 

programming course scores, offering a new approach to understanding 

programming language aptitude. The study aims to bridge the gap between 

prerequisite courses and subsequent skill development, contributing valuable 

insights to computing education curriculum design. 
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1. INTRODUCTION  

In today’s rapidly evolving technological landscape, computing education continues to grapple with 

persistent challenges in teaching programming language effectively. Despite significant advances in research 

and curriculum development [1], students often struggle to acquire the intended programming skills. While 

prerequisite courses aim to prepare students for advanced programming studies, a significant gap often 

remains between the intended and actual skill acquisition [2], [3], [4]. 

Recent studies have explored various facets of programming language learning, including the impact 

of AI tools on novice learners [5], student perspectives on AI assistants [6], shared neural resources in 

programming [7], and the effect of professional development on coding education [8]. Additionally, 

researchers have investigated instructional modalities, conceptual transfer between languages, and 

correlations with Computational Thinking skills [9]. 

Despite these advancements, the fundamental question persists: What aptitudes are essential for 

successfully learning programming languages? Traditional approaches, such as the IBM Programmer 

Aptitude Test and standardized examinations like the SAT, have shown limited efficacy in predicting 

programming success [10]. Moreover, while programming logic is rooted in mathematical skills, the role of 

linguistic abilities in mastering programming syntax remains underexplored. 

This study aims to address this gap by developing a comprehensive methodology to assess students' 

programming performance and identify the specific aptitudes influencing their learning outcomes. We 

hypothesize that a combination of cognitive, linguistic (Natural Language), and mathematical skills 

significantly impacts a student's ability to learn programming languages effectively. 

To test this hypothesis, we will employ a mixed-methods approach, utilizing Machine Learning 

(ML) and Natural Language Processing (NLP) techniques to analyze student performance data and aptitude 

indicators. Our research question is: What combination of aptitudes best predicts success in learning 

programming languages? 

The significance of this study lies in its potential to inform more effective curriculum design and 

student support strategies in computer science education. By identifying key aptitudes, educators can develop 
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targeted interventions to enhance students' programming skills, potentially improving retention rates and 

overall success in computing programs. 

 

2. LITERATURE REVIEW 

In the paper "Studying the Effect of AI Code Generators on Supporting Novice Learners in 

Introductory Programming," a controlled experiment with 69 novice learners was conducted to investigate 

the impact of AI code generators, specifically OpenAI Codex, on introductory programming [5]. The findings 

revealed that learners with Codex access demonstrated significantly improved code-authoring performance, 

with increased completion rates and higher scores. While learners with access to Codex showed better 

performance in post-tests, the difference was not statistically significant. The study also highlighted the 

influence of prior programming competency, with learners having higher pre-test scores benefiting more 

from AI code generators, such as Codex, during their training. Additionally, qualitative feedback suggested 

that Codex usage reduced stress and enhanced learners' enthusiasm for programming, although concerns 

about over-reliance were raised. 

The study by [6] investigates students' perspectives on using ChatGPT in programming education. 

The study involved 41 undergraduate students over eight weeks, where students used ChatGPT for weekly 

programming assignments. The findings indicate advantages such as quick and correct answers, improved 

thinking skills, and debugging facilitation. However, limitations include potential laziness, incomplete or 

incorrect answers, and concerns about professional impact. The research suggests integrating generative AI 

tools into programming courses with caution, considering both advantages and limitations. 

In [7] demonstrated the shared neural resources between computer code comprehension and formal 

logical inference, shedding light on the cognitive processes underlying programming language learning. 

However, a potential limitation lies in the study's focus on expert programmers, possibly neglecting the 

nuances of aptitude development in novice learners. Further research may be needed to explore how these 

neural patterns evolve with varying levels of programming experience, contributing valuable insights to 

investigations into the aptitude required for learning programming languages. 

In study [8]  assessing the impact of continuous professional development on elementary teachers' 

self-efficacy in teaching coding and computational thinking. The research emphasizes the importance of 

hands-on methods and student success in enhancing teachers' confidence. The findings highlight the 

effectiveness of year-long professional development in improving teacher self-efficacy, with a focus on 

various coding concepts. The study provides insights into the professional growth of elementary teachers in 

coding and computational thinking. 

The literature reveals a noteworthy association between programming experience and enhanced 

neural efficiency in figural reasoning tasks, as evidenced by the study conducted by [9]. This aligns with the 

broader understanding of programming skills influencing cognitive processes and figural reasoning abilities. 

However, a potential gap in the existing research is the lack of direct assessment of cognitive aptitude, such 

as critical thinking, problem-solving, and logical reasoning, which are crucial components in the context of 

learning programming languages. Addressing this gap is essential for a comprehensive understanding of the 

cognitive aptitude required for effective programming language acquisition. 

The researcher [11] investigated predictors of success in an introductory programming course, 

revealing first-semester GPA and language admission test scores as significant factors. The study recognized 

the complexity of predicting success, considering varied factors across engineering specializations. However, 

the study did not directly address the nuanced aptitude for learning programming languages, leaving a gap 

that does not align with research on programming language aptitude using machine learning and natural 

language processing. 

A study [12] delves into the impact of technical reading training and spatial skills training on novice 

programming ability, revealing that a CS-focused technical reading intervention yields larger programming 

gains than a standardized spatial intervention. The research underscores the distinctiveness of cognitive skills, 

emphasizing the relevance of technical reading and spatial abilities to programming success. However, a 

notable limitation is the potential lack of generalizability due to a small, homogeneous sample with high 

spatial abilities. The study conducted during the COVID-19 pandemic introduces confounding factors, urging 

caution when applying findings to diverse learner populations or alternative contexts. 

The study about neuroimaging [13] delves into the neural underpinnings of reading, visualization, 

and coding in novice programmers, using fNIRS to identify distinct brain activation patterns in occipital, 

parietal, and frontal cortices. While shedding light on the cognitive processes involved in coding, the study 

faces limitations, including a restricted participant pool from a single university, potentially limiting 

generalizability. The reliance on fNIRS introduces the risk of false negatives, and the study's construct 

validity is challenged by the multifaceted nature of spatial abilities. Acknowledging these limitations, the 

research underscores the need for further exploration into alternative experimental paradigms and a broader 

focus on specific programming activities to strengthen the study's findings. 
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To address a gap in the literature on instructional modalities in programming education by 

investigating the effectiveness of audio, text, or combined explanations for code comprehension. Rooted in 

educational psychology, the research focuses on the modality effect and its implications for instructional 

design, contributing to ongoing discussions on improving programming education methodologies [14]. 

However, limitations include a narrow focus on the modality effect, potential oversight of other influencing 

factors, limited discussion on sample characteristics, and questions about generalizability. The replication 

nature of the study may also restrict its applicability to diverse educational settings, suggesting a need for 

future research with more comprehensive variables and larger, more diverse samples. 

The study [15] explored conceptual transfer in the context of transitioning from procedural Python 

to object-oriented Java. The study underscores the significance of semantic transfer based on syntax 

similarities and introduces a validated Model of Programming Language Transfer (MPLT). Emphasizing the 

need for deliberate semantic transfer interventions, the findings contribute a validated model and pedagogical 

guidelines for educators. However, limitations include potential generalizability issues due to the specific 

focus on this programming language transition, sample size constraints with relatively novice programmers, 

and the reliance on mixed methods, which may introduce biases. The study's duration and scope may also 

limit insights into long-term conceptual transfer, and external factors such as individual learning styles could 

impact results. 

To examine undergraduate students' performance on iterative and recursive programming tasks, 

highlighting significant differences in success rates between these problem framings. Notably, iterative 

versions excel in non-branching numeric computation, while recursive versions outperform in array 

classification. The research underscores the impact of contextual factors like experience, gender, ethnicity, 

and spatial ability on programming performance, providing nuanced insights into language learning [16]. 

However, limitations include a potential lack of generalizability, reliance on self-reported data posing 

reliability concerns, and specificity to certain languages and curricula, limiting broader applicability. Despite 

these constraints, the study yields valuable insights into student performance and error patterns in iterative 

and recursive programming scenarios. 

The study [17] investigated the correlation between Computational Thinking (CT) skills and 

proficiency in ChatGPT-based software development. The study found that CT skills were predictive of the 

ability to develop software using ChatGPT. However, the research has limitations, such as a narrow focus on 

CT skills, reliance on a single task for assessment, and potential age-related and generalizability concerns. 

Nevertheless, the study offers valuable insights into the evolving competencies of programmers using 

advanced tools like ChatGPT, laying the groundwork for understanding the skills required in this context. 

The researcher in [18] utilized machine learning algorithms to predict academic performance in 

middle- and high school students, revealing the significant influence of factors like physical activity, stress, 

family size, parent’s marital status, food intake, prior academic performance, and obesity on academic 

outcomes. Despite its valuable insights, the study's limitations include a sample population confined to a 

metropolitan city, potentially restricting generalizability to rural settings. The reliance on self-reported 

questionnaires for stress assessment introduces subjectivity, prompting the need for more objective stress 

measurement techniques. Acknowledging low variability in body weight raises concerns about 

generalizability, emphasizing the importance of diverse participant pools in future research for a 

comprehensive understanding of academic performance predictors. 

The dissertation [19] comprehensively investigated the understanding of computer programs from 

computational and cognitive standpoints. The study evaluates code models' comprehension, explores 

behavioural responses to code, and employs neuroimaging to study the neural bases of code comprehension. 

While contributing significantly to the understanding of cognitive processes in code comprehension, the 

research suggests future directions, including applying findings to computer science education and exploring 

separate architectures for distinct reasoning tasks. However, the study has limitations, such as a narrow focus 

on code comprehension, potential ecological validity concerns in behavioural metrics, and insufficient 

exploration of cognitive differences across programming languages. The dissertation also highlights the need 

to address challenges and biases in training large-scale language models and calls for explicit methodologies 

for applying neuroimaging results to computer science education. 

Study [20] investigates the prediction of Python programming and debugging skills through a 

combination of intermittent knowledge assessments, individual psychometrics, and resting-state EEG 

measures. The research highlights the significance of declarative knowledge assessments, particularly post-

module quizzes, in predicting multiple-choice test accuracy, programming accuracy, and debugging 

accuracy. Despite the valuable insights into the interplay between cognitive characteristics and declarative 

knowledge, the study has limitations. Its narrow focus on Python programming may restrict generalizability, 

and its reliance on intermittent knowledge assessments might overlook crucial aspects of programming skills. 

The use of online platforms introduces variability, and the sample's lack of prior programming experience 

raises questions about the study's broader applicability. Further, the validity of resting-state EEG measures 
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for predicting real-world programming expertise requires additional validation. Lastly, the study's reliance on 

self-paced online learning may limit its generalizability to more structured educational settings. 

In [21], click or tap here to enter text employed functional magnetic resonance imaging (fMRI) to 

investigate neural representations of computer programs, revealing insights into how specific brain regions 

encode static and dynamic code properties. The study's mapping of brain representations to machine learning 

models enhances our understanding of the intricate connection between the human brain and code 

representations, showcasing the potential application of neuroscience in deciphering programming cognition. 

However, limitations include a focus on a dataset with simple Python programs, potentially restricting 

generalizability, an emphasis on comprehension tasks, and the need for further exploration of brain-code 

mappings across diverse programming languages. Sample size concerns and the evolving nature of 

neuroimaging technology also prompt considerations for refining future research. 

In [22] underscored the importance of Computational Thinking (CT) education in fostering essential 

skills such as problem-solving and logical reasoning. They discuss the current emphasis on CT in education, 

citing initiatives like "CT for All" and various standards. The authors present four studies highlighting the 

effectiveness of metaphors in teaching CT concepts, particularly in programming education. Identified 

challenges encompass the need for clear CT competencies, efficient use of metaphors, exploration of 

pedagogical strategies and technologies, teacher professional development, and the assessment of CT 

competencies. However, limitations include a primary focus on primary education, potential oversights in 

discussing challenges, and a perceived emphasis on the need for further research without comprehensive 

solutions. 

The study by [23] introduces the Programming-oriented Computational Thinking Skills (P-CTS) 

scale, assessing conceptual knowledge, algorithmic thinking, and evaluation in the context of programming 

education. The findings underscore the importance of programming experience, emphasizing the critical 

threshold of over one year for skill enhancement. Notably, the research highlights gender differences in 

evaluation skills, contributing valuable insights to inclusive programming education. However, limitations 

include a focus on university students, raising questions about generalizability to other educational levels, 

and the need for further exploration regarding the scale's applicability in interdisciplinary contexts or STEM 

education. Additionally, the study suggests avenues for future research to delve into specific factors 

influencing gender differences in evaluation skills, enhancing the scale's robustness and applicability. 

The study by [24] delves into the cognitive benefits of learning to code, asserting that coding skills 

share thinking processes with mathematical Modelling and creative problem-solving. The research presents 

empirical evidence supporting the potential transfer effects of coding skills to other cognitive domains, 

underscoring the necessity for explicit training to facilitate such effects. Despite the promising evidence, the 

study acknowledges limitations, including the absence of a definitive causal relationship and potential 

confounding factors. The meta-analytical approach's limitations are recognized, emphasizing the need for 

more precise assessment tools and further research to unravel the intricate mechanisms and conditions 

influencing the transferability of coding skills. 

Researchers [25] investigated the neurocognitive processes in code comprehension, using 

electrophysiological measures to reveal N400 effects for semantic congruencies and P600 effects for 

syntactic anomalies in Python code. The study suggests that expert programmers prioritize structural aspects 

over semantics, emphasizing the incremental nature of code comprehension. However, limitations include the 

cross-sectional design hindering causal inferences, a focus on Python programmers limiting generalizability, 

and the exclusive emphasis on certain code violations overlooking broader aspects of comprehension. 

Addressing these limitations in future research is crucial for a more comprehensive understanding of the 

cognitive processes involved in programming language learning. 

Study [1] tackled challenges in teaching introductory programming through the HTP programming 

application, designed for early problem identification and intervention. Utilizing action research, the study 

focuses on students at the Polytechnic of Guarda, yielding positive outcomes in monitoring and a predictive 

neural network model for early failure detection. However, limitations include context-specific effectiveness, 

potential bias in student engagement, and uncertainties introduced by external factors like the COVID-19 

pandemic, emphasizing the need for cautious interpretation and further validation. 

In this era, computer programming plays a significant role in solving real-life problems in every 

domain. The field usually resembles the taxonomy of science, technology, engineering, and mathematics 

(STEM) areas. Programming languages are also like natural languages. Empirically, minimal research has 

been evaluated on the cognitive aspect of programming to understand the human mind and has the power to 

change educational practices [26]. Thus, it shows that programming is specifically like natural language. 

However, as their proposed framework explains, computer programming and natural language are based on a 

set of building blocks, such that words and phrases are specifically composed in natural language. Secondly, 

computer languages are based on variables. Moreover, it explains the criteria for these building blocks to 

combine and create new meanings from them. 



ISSN: 2583-6250         Prisma Publications 

 

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 44 

A recent study by [27] investigated the relationship between a second natural language (L2) and a 

programming language. However, their purpose was to explore the 1st year students’ (College of Engineering 

and Applied Sciences at Cincinnati University) concepts of computing with a 1st year engineering 

curriculum. Moreover, students’ course performance is evaluated based on previous and ongoing experiences 

with SLA and accounted for through their previous knowledge of programming languages. They set the 

criteria for a second natural language that at least one foreign language course has to be taken or studied (e.g., 

Spanish, German, French, and Italian). Secondly, for the computing language, a single course must be studied 

previously at the university level or in high school. They said in their study that they used non-parametric 

approaches to discover the significant differences between those who experienced a second natural language 

and those who did not. Thus, their statistical findings explain that there is no inconclusive relationship 

between them, but further study will be more appropriate. 

Additionally, a study was conducted to measure the programming skills of high school (K-12) 

students [28]. This research was carried out on a group of students at a large university in the Pacific 

Northwest of the United States. The work aims to measure the effects of previous programming experience in 

introductory programming courses. Secondly, they evaluated the previous programming knowledge with the 

introductory programming course midterm and final term assessments, as well as the survey and aptitude test. 

Thus, their findings explain the mismatch or differences between the results of surveys and aptitude tests. 

The results of the survey reveal that previous knowledge, particularly that obtained in high school, has only a 

minor impact on midterm performance, while the aptitude performance of the students has a crucial impact 

on both the midterm and final term in the introductory programming course. 

A particular study was also conducted on problem-solving as a predictor of programming 

performance [29]. However, the purpose of the research specified the correlation of problem-solving ability 

with their academic performance in 1st year programming courses. Moreover, their limitation explains that 

they used five specific variables in the study, such that a student's achievements in a programming course are 

set as a dependent variable. As for independent variables, they defined four aptitude tests composed of 

predictors: logical reasoning, non-verbal reasoning, numerical reasoning, and verbal reasoning. Notably, each 

student's participating group consists of 379. Nevertheless, their finding indicates a correlation between 

students' logical reasoning, numerical reasoning, verbal logic, and performance in computer programming 

modules. Secondly, their study mentions no correlation between students' non-verbal reasoning and 

performance in computer programming modules. 

Countless instructors and educators claim that innumerable students are facing difficulty in learning 

1st-year University or institution computing science courses. Thus, various initiatives are assessed to support 

student’s academic success. University instructors provide several forms of academic support with the 

programme, such as learning strategies that should be discussed with students. The forum is named 

"Academic Enhancement Program" (AEP), which was invented and is active by the School of Computing 

Science and the Learning Commons at Simon Fraser University. This particular forum provides learning 

strategies for 1styear CS University courses from late 2006. In parallel to these learning strategies, the 

authors in [30] came up with another strategy to improve or enhance the learning experience of students that 

focused on peer instruction and active learning with audience response systems and was named “i-clickers". 

In their study, they defined three variables such as predictors (MID, WIC, and FIN), which were used in 

ordinary multiple regression analysis and will be analyzed for the potential of these activities over course 

success. The limitation of the study is based on the introductory course CS, which is offered in the 2013 Fall 

Semester and is composed of 363 students. Their findings indicate that the weighted i-clicker is not a very 

suitable predictor for the final exam score. 

Nonetheless, a recent study by [31] linked natural language aptitude to atomic differences in 

learning programming languages. In their study, they believe that natural language itself is a strong predictor 

for learning and coding programming languages, which signals that learning a new programming language 

may be parallel in terms of learning a new natural language. However, they described various variations of 

the findings in their study, such that behavioural and neural (resting-state EGG) are the indicators of 

measuring language aptitude, whereas numeracy and fluid cognitive measures, i.e., fluid reasoning, working 

memory, and inhibitory control, were defined as the predictors. On the other hand, researchers also suggested 

that programming languages can be predicted with the predictor's mathematical aptitude [32]. Chomsky's 

theory, based on formal language, recently defined accurate sentence building in natural languages as an 

origin tool in mathematics theory and programming languages [33]. 

The possible limitation of the present approaches, as determined by the literature review, is that 

previously, no single educational case study existed that investigated the aptitude predictors collectively, such 

as cognitive, natural language, and mathematics. This is where the novelty of the present work comes in 

trying to fill this gap by undertaking a comprehensive study that touches on all aspects of aptitude for 

learning programming languages. Firstly, a large undergraduate academic record and course objectives 

dataset related to Pakistan's universities are employed in this study. Secondly, the study evaluates the 
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developed dataset using several ML algorithms and uses an NLP state-of-the-art pre-trained text-based 

algorithm. Thirdly, it evaluates all the models based on error metrics. Lastly, it compares all the employed 

models to select the most effective and best-performing model. 

 

3. METHODOLOGY 

The complexity of understanding programming language aptitude necessitates a rigorous and 

systematic research approach.  

 
 

Figure 1. Flow chart of the implemented methodology for this study 

 

Table 1. Data Sources and Characteristics 

Index Data Sources Key Characteristics 

1 Student’s Academic Scores 

Secondary School Certificate (SSC) scores 

Higher Secondary Certificate (HSSC) scores 

First and second-semester course scores, with 

emphasis on programming fundamental core courses 

2 Course Outlines 

Analyzed to determine the specific types of skills 

required for each course 

Skills categorized into cognitive, natural language, 

and mathematics 

Mapped to the programming fundamental scores to 

estimate individual student skills 

This single case study was designed to investigate the aptitude skills necessary for learning a 

programming language at Riphah International University Islamabad I-14 Campus, Islamabad. By employing 
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a carefully structured research design, our study aimed to capture the multifaceted nature of programming 

language learning through two primary data sources, as detailed in Table 1. 

The methodological architecture, visually represented in Figure 1, provides a holistic framework for 

our investigative process. This approach allows for a nuanced examination of the various skills and factors 

that potentially contribute to successful programming language acquisition.  

3.1. Dataset Gathering 

Understanding the right data is crucial to any research. This section provides a comprehensive 

overview of the datasets utilized in our research, detailing the sources, composition, and characteristics of the 

undergraduate student and course objective datasets. By providing a description of data collection and 

preprocessing, we establish the foundation for our investigation into programming aptitude skills. The dataset 

for this case study was collected from the Department of Computer Science and Software Engineering. Two 

distinct datasets were compiled, as detailed in Table 2. 

 

Table 2. Overview of Gathered Datasets 

Datasets Sample Counts 

Undergraduate student dataset 1238 

Course’s objective dataset 15 

3.1.1. Undergraduate Student’s Dataset 

The undergraduate student dataset forms the core of this study’s analysis, capturing academic 

records from students enrolled in two disciplines: Bachelor of Science in Software Engineering (BSSE) and 

Bachelor of Science in Computer Sciences (BSCS). It includes Secondary School Certificate (SSC) and 

Higher Secondary School Certificate (HSSC) marks, academic records from the fall 2019 and spring 2020 

semesters, and programming fundamental marks for all students. 

Notable characteristics of the dataset are that some records may be incomplete due to semester-

specific course requirements or student withdrawals. Certain SSC and HSSC records were missing from the 

original data sheets. The dataset was consolidated by merging records based on student roll numbers. Due to 

missing variables and elective course choices, the dataset is imbalanced. The dataset comprises 1238 student 

records with 19 attributes, including: 

• Identification: Roll Number 

• Prior Education: SSC Marks, HSSC Marks 

• Course Marks: 16 different courses, including Programming Fundamentals (dependent 

variable) 

All attributes except Programming Fundamentals are independent variables. 

3.1.2. Courses Objective Dataset 

The course objective dataset plays a pivotal role in this study by linking specific course goals to 

programming fundamental performance. This mapping helps identify the key aptitude skills necessary for 

programming success. Key features include: 

• Source, i.e., course outlines from the Computer Science and Software Engineering 

Department 

• Attributes, i.e., Courses (15 instances) and Objectives (course-specific criteria and aims) 

• Nature, i.e., Text-based dataset reflecting natural language 

Courses included: 

1. Introduction to Information and Communication 

2. English Composition and Comprehension 

3. Applied Physics 

4. Discrete Structures 

5. Data Structures and Algorithms 

6. 3D Modelling 

7. Communication and Presentations Skills 

8. Linear Algebra 

9. Pre-Calculus-1 

10. Pre-Calculus-2 

11. Probability and Statistics 
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12. Life and Living 

13. Calculus and Analytical Geometry 

14. Digital and Logic Design 

15. Programming Fundamentals 

Each course has tailored objectives, which may overlap with other institutions but are specific to this 

university's curriculum. 

3.2. Aptitude Abilities and Mapping 

Expanding on the dataset descriptions, this section outlines our systematic approach to identifying 

and mapping the aptitude abilities that are essential for programming language learning. We detail our 

research focus, text classification model, and the innovative process of correlating course objectives with 

student performance in programming fundamentals. 

3.2.1. Research Focus 

This study is centred on identifying the key aptitudes and abilities that influence programming 

language learning, focusing on three key areas, i.e., cognitive, natural language, and mathematical skills. 

We employ these categories to estimate the probability of each aptitude's influence on programming 

language learning. 

3.2.2. Text Classification Model 

To effectively analyze course objectives and map them to the identified aptitude categories, we 

employ a pre-trained zero-shot text classification model with the following key characteristics: 

• Training Dataset, i.e., Multi-Genre Natural Language Inference (Multi-NLI), comprising 

433,000 sentence instances 

• Input, i.e., Course objective corpora (textual data) 

• Output, i.e., probability estimates for each aptitude category (cognitive, natural language, 

mathematics) 

The model classifies text sequences using relevant labels, accommodating various domains such as 

education, politics, astronomy, etc. 

3.2.3. Aptitude Mapping 

The estimated aptitude abilities derived from course objectives are mapped to students’ performance 

in programming fundamentals. This mapping process involves predicting programming fundamental scores 

using Machine Learning (ML) models and correlating these predictions with the estimated aptitude abilities 

from the text classification model. 

3.2.4. Feature Selection 

For ML modelling, we selected a subset of features from the original dataset. The total number of 

features used was 7, while the selection criteria were features with minimal missing data, and the main 

purpose was to enhance model accuracy and reliability. 

The subsequent sections will detail the specific attributes used and the ML models employed for 

predicting programming fundamental scores. 

3.3. Implementation 

3.3.1. Dataset Overview 

The implementation phase utilized a student dataset comprising 18 features, including identification, 

prior education marks, and various course marks. This dataset focused on students who completed the 

programming fundamentals course alongside elective and core subjects. Due to variations in course timing, 

some missing values were present in the dataset. However, comprehensive academic records (SSC and 

HSSC) were available for all students, minimizing the impact of missing data. 

3.3.2. Imputation Technique 

To address missing course mark values, we employed the K-Nearest Neighbor (KNN) imputation 

technique. This method, while computationally intensive for large datasets, proved effective and highly 

accurate for our small to medium-sized datasets. The KNN imputer computed distances between new points 

and training points, selected the k closest data points based on distance, and applied appropriate distance 
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metrics depending on the data type. Figure 2 illustrates the workflow for filling in missing values in a 

student's record. 

  

Figure 2. KNN imputation workflow for student’s regression-based dataset 

3.3.3. Data Preprocessing 

Data preprocessing was crucial to address inconsistencies in grading scales between SSC/HSSC 

marks (0-1050, 0-1100 scale) and other variables (0-100 scale). We normalized all features using min-max 

scaling to a range of 0 to 1, ensuring data generalization and improving machine learning model 

interpretation. This transformation allowed for more accurate analysis and comparison across different 

academic measures. 

3.3.4. Correlation Analysis 

To assess the relationships within the dataset, we conducted a correlation analysis between 

dependent and independent variables. Our findings revealed that all attributes showed strong self-correlation, 

as expected. The dependent variable "Programming Fundamentals" positively correlated with most 

independent variables, except for "SSC/HSSC Marks," which showed a different relationship pattern. This 

analysis provided valuable insights into the factors potentially influencing success in programming 

fundamentals. The results are illustrated in Figure 3. 

3.3.5. Implementation Strategy 

This implementation strategy, combining imputation techniques, feature scaling, and correlation 

analysis, ensured a robust examination of the factors influencing success in programming fundamentals. By 

accounting for data complexities and variations in student academic histories, we established a solid 

foundation for further analysis and model development in our study of aptitude skills necessary for learning 

programming languages. 
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Figure 3. Programming Fundamental correlations along with independent variables 

3.4. Modeling Using Machine Learning (ML) and Natural Language Processing (NLP) 

In this section, we outline a comprehensive framework for predicting programming fundamental 

marks through machine learning (ML) and natural language processing (NLP) techniques. This approach 

leverages state-of-the-art regression models and zero-shot text classification methods to map aptitude skills 

and predict student performance. 

We divided the data into training (80%) and testing (20%) sets using scikit-learn's train_test_split 

function, with random_state=45 for consistency. Four state-of-the-art ML models were employed to predict 

programming fundamentals marks. 

3.4.1. KNeighbors Regression (KNR) 

The KNeighbors Regression (KNR) is a supervised machine learning method used for predicting 

numerical values by evaluating the similarity between data points [34]. Distance metrics such as Euclidean, 

Manhattan, and Minkowski are used for continuous variables. The Euclidean distance formula is mentioned 

in Equation 1. 

√∑ (𝑦𝑖 − 𝑥𝑖)2𝑛
𝑖=1  (1) 

Selecting an appropriate K value is crucial to balance between overfitting (small K) and underfitting 

(large K). While rare exceptions exist, higher K values are generally recommended to avoid overfitting. 

3.4.2. Random Forest Regression (RFR) 

Random Forest Regression (RFR) is a robust ensemble learning technique that leverages multiple 

decision trees to enhance prediction accuracy. By combining bootstrapping, bagging, and aggregation, RFR 

mitigates overfitting and improves generalization performance [35]. The model's performance is determined 

by the aggregated results of these trees. 
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The RFR model is constructed by drawing an input variable X from the training set, creating a 

specified number (𝑁) of regression trees, after (𝑁) variables in the RFR model and trees such as {{𝑇(𝑖)}}𝑖
𝑁 

are increased, averaging predictions from all decision trees. The predictor of regression after n variables and 

m trees is mentioned in Equation 2. 

𝑓𝑟𝑓
𝑁 (𝑖) =  

1

𝑁
∑ 𝑇(𝑖)𝑁

𝑁=1  (2) 

 

RFR promotes tree diversity through bagging, which involves randomly sampling training data with 

replacement. When constructing trees, RFR randomly selects a subset of features and chooses the best feature 

and split point from this subset. This approach reduces the correlation between trees and lowers 

generalization error [36]. 

RFR trees grow without pruning, making them relatively lightweight. Out-of-bag (OOB) subsets, 

formed by data points not included in the training, can be used to estimate individual tree performance [37]. 

As the number of trees increases, the generalization error decreases, indicating reduced overfitting risk. 

3.4.3. Gradient Boosting Regressor (GBR) 

Gradient Boosting Regression (GBR) is an ensemble technique designed to sequentially improve 

prediction accuracy by adding models iteratively. Each new model addresses the errors of the previous 

ensemble, making GBR effective for reducing prediction errors [38]. GBR generalizes by optimizing any 

differentiable loss function using gradient descent [39]. GBR comprises three components: a loss function to 

be minimized, a weak learner for predictions, and an additive model combining weak learners to reduce the 

loss function [40]. The key innovation is constructing new weak learners strongly correlated with the 

negative gradient of the loss function, computed with respect to the entire ensemble. This approach allows for 

arbitrary loss functions, resulting in sequential error fitting for typical squared-error loss. 

3.4.4. Light GBM Regressor (LGBMR) 

Light GBM Regressor (LGBMR) is a cutting-edge machine learning method known for its 

efficiency in both data regression and categorization tasks. It employs innovative techniques like Exclusive 

Feature Bundling (EFB) and Gradient-based One-Side Sampling (GOSS) to optimize performance and 

reduce processing times [41]. LGBMR outperforms traditional methods in data scanning, sampling, 

clustering, and classification, making it superior in terms of memory usage, processing time, and 

computational efficiency. Its advantages include faster training, optimal memory utilization, satisfactory 

accuracy, parallelism, and large-scale data processing capabilities. 

3.4.5. Aptitude Mapping Using NLP 

Aptitude Mapping Using NLP leverages zero-shot learning techniques to classify unseen aptitude 

labels within course objectives. By exploiting semantic relationships in a high-dimensional vector space, this 

method enables accurate classification without requiring extensive labelled data [42].  

For aptitude mapping, a pre-trained NLP model for zero-shot text classification is deployed on a 

text-based course objective dataset. The process involves installing necessary libraries and loading the zero-

shot classification pipeline, providing the model with text sequences (course objectives) and premise 

candidate labels (predictors: cognitive, natural language, and mathematics). The model classifies courses 

based on their potential abilities or the predictor with the greatest influence. 

This approach estimates values for each listed course and its objectives, effectively mapping 

aptitudes without requiring extensive labelled training data. Zero-shot learning models require the presence 

of a labelled training set of seen and unseen classes, with both classes related in the semantic space where 

seen class knowledge can be transferred to unseen classes [42]. 

4. RESULTS AND DISCUSSION  

This section presents the results of our investigation into aptitude skills necessary for learning 

programming languages. Using undergraduate student data from Riphah International University’s Islamabad 

campus, our analysis identifies cognitive abilities as the primary aptitude influencing programming 

performance with a potential range of 62%. Additionally, 24% of natural language skills and 14% of 

mathematics skills are necessary. As a result, these findings are significant, and in an educational setting, it is 

crucial to focus on students' cognitive abilities, as these may have a bearing on their future learning. 

Furthermore, natural language and mathematics skills are also important in the context of learning 

programming languages. 

The single educational case study was designed to delve deeper into the aptitude skills required for 

learning programming languages. However, to accomplish this task, we employed novel approaches to 
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identify the specific aptitude skills. Our methodology encompasses ML and NLP models that are used to 

address a specific problem. The results demonstrate that we can predict students' scores in the fundamental 

programming course based on their previous courses and academic scores. Second, course objective 

predictors represent the required skills, namely cognitive, natural language, and mathematics. These 

predictors should be applied to the predicted scores of PF to determine the skill set a student possesses in 

order to pursue their journey in the programming language domain. Additionally, previous academic courses 

also define the abilities attained by students, making it easier to identify their specific ability traits. Therefore, 

when designing curricula, instructors need to focus on students' abilities based on their previous courses. This 

will make it easier for students to tackle their further learning aspects. Moreover, by employing this 

methodology, instructors can also predict the learning of programming language courses, leading to more 

effective learning paradigms. Figure 4 illustrates the essential aptitude skills required for learning 

programming languages. 

 

 

Figure 4. Programming language learning aptitude abilities. 

4.1. Data Preparation 

4.1.1. Assessment of Missing Data 

Several courses contain varying levels of missing data, as outlined in Table 3. These missing values 

are either due to administrative errors or course withdrawals by students. 

Table 3. Missing Values Count Per Variable 

Index Courses Missing Values 

1 Roll Number 0 

2 SSC Obtained Marks 1120 

3 HSSC Obtained Marks  283 

4 Introduction to Information and Communication Marks 623 

5 English Composition and Comprehension Marks 624 

6 Applied Physics Marks 634 

7 Discrete Structures Marks 865 

8 Data Structures and Algorithms Marks 1236 

9 3D Modeling Marks 1236 

10 Communication and Presentations Skills Marks 1237 
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11 Linear Algebra Marks 1236 

12 Pre-Calculus – I Marks 1187 

13 Pre-Calculus – II Marks 1237 

14 Probability and Statistics Marks 1236 

15 Life and Living Marks 1237 

16 Calculus and Analytical Geometry Marks 1022 

17 Digital and Logic Design Marks 1236 

18 Programming Fundamentals Marks 621 

 

Nine features exhibit the most significant amount of missing data, with some courses showing up to 

95% missing entries, as highlighted in Table 4. These courses are considered for removal due to the 

infeasibility of imputation. 

Table 4. Features with Maximum Missing Data 

Index Features Maximum 

Present 

Values 

1 Data Structures and Algorithms Marks 1236 

2 3D Modeling Marks 1236 

3 Communication and Presentations Skills Marks 1237 

4 Linear Algebra Marks 1236 

5 Pre-Calculus – I Marks 1187 

6 Pre-Calculus – II Marks 1237 

7 Probability and Statistics Marks 1236 

8 Life and Living Marks 1237 

9 Digital and Logic Design Marks 1236 

 

4.1.2. Dropping Features 

Handling missing data effectively is essential for improving model performance and ensuring data 

integrity. In cases where features contain an excessive amount of missing values, such as those listed in Table 

3, imputation may not be feasible. Features with over 95% missing data are considered unreliable and are 

thus excluded from the dataset. 

Python's Pandas library offers tools to efficiently drop these features from the dataset. Consequently, 

features such as mentioned in Table 4, have been removed from the analysis. These actions streamline the 

dataset by retaining only the most relevant and complete records for subsequent analysis. 

4.1.3. Identification of Outliers in Data 

Outliers are data points that significantly deviate from the general trend of a dataset, often referred 

to as anomalies, deviants, or discordant observations [43]. In the student academic records dataset, outliers 

are observed in the SSC Obtained Marks and HSSC Obtained Marks features. Other features, such as 

Introduction to Information and Communication, English Composition and Comprehension, Applied Physics, 

Discrete Structures, and Programming Fundamentals, were not found to contain outliers based on descriptive 

statistical analysis. 

4.1.4. Outliers in SSC Obtained Marks 

This feature displayed a negatively skewed distribution on the right tail and minimal positively 

skewed values on the left tail. While SSC marks should range from 0 to 1,050 or 1,100, the observed 

distribution ranged from 0 to 1,200 (Figure 5). Addressing these outliers is crucial for achieving a 

symmetrical distribution, which is essential for the accurate calculation of quartiles, mean, median, and 

mode. 

4.1.5. Outliers in HSSC Obtained Marks 

The HSSC obtained marks data exhibited outliers (Figure 6), with positive skewness on the left tail 

and negative skewness on the right. The observed data ranged from below 0 to 5,000, with an expected upper 

bound of 1,150. These outliers distort the frequency distribution and impact the interpretability of the mean, 

median, and mode. 
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Figure 5. Attribute SSC Obtained Marks Outliers 

 

Figure 6. Attribute HSSC obtained marks outliers 

4.1.6. Handling Outliers in SSC Obtained Marks 

To address the outliers in the "SSC Obtained Marks" feature, we employed the following 

methodology. Utilized the quantile() function from the Python Pandas library to estimate value quantiles 

along the index axis. Determined the distribution of variable values, including lower and upper bounds. 

Initialized variables for the lower bound (LB = 0.1) and upper bound (UB = 0.95) effectively trimmed the 

data to the 10th-95th percentile range, as shown in Table 5. 

Table 5. SSC Obtained Marks Data Distribution Range 

Bounds Range SSC Obtained Marks Min/Max 

Data Range 

Lower Bound 0.1 562 

Upper Bound 0.95 968 

 

Established criteria for "SSC Obtained Marks" feature values based on the determined ranges. 

Filtered true values and removed false values from the feature index. The resulting symmetric data 

distribution is illustrated in Figure 7, with the box plot quartile values (Minimum: 570, Q1: 685, Q2 

(Median): 773, Q3: 841, Maximum: 967). 

This approach effectively addressed the outliers, resulting in a more evenly distributed dataset 

suitable for further analysis. 

4.1.7. Handling outliers in feature HSSC obtained marks 

The HSSC Obtained Marks feature contains outliers that result in a skewed distribution, with 

significant differences between the mean, median, and mode. To mitigate this issue, the quantile() function 

from Python's Pandas library was used to identify and manage the outliers. This method estimates quantiles 

to define the boundaries for acceptable data ranges. 
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Figure 7. SSC obtained marks data distribution and box plot 

Through quantitative analysis, the lower bound (LB) was set at the 10th percentile (0.1) and the 

upper bound (UB) at the 95th percentile (0.95). This approach removes extreme data points, retaining values 

within the 10-95% range of the distribution, as shown in Table 6. 

 

Table 6. HSSC Obtained Marks Data Distribution Range 

Bounds Range SSC Obtained Marks Min/Max 

Data Range 

Lower Bound 0.1 565.0 

Upper Bound 0.95 909.3 

 

After filtering based on these bounds, outliers were removed, and the data exhibited a more balanced 

distribution. This is reflected in the box plot (Figure 8), with quartile values as follows: minimum = 566, Q1 

= 628, Q2 = 685, Q3 = 755 and maximum = 909. The removal of outliers ensures a more accurate 

representation of the data. 

 

Figure 8. HSSC Marks data distribution and boxplot 

4.2. Machine Learning Models for Student Performance Prediction 

4.2.1. Train / Test Split Data Preparation 

For all models, the dataset was split into 80% training and 20% testing sets, with a random state of 

45 to ensure reproducibility. 

4.2.2. KNR Model 

The KNR model was optimized by iteratively testing K values up to 20. The optimal K value of 4 

was determined based on the minimum mean squared error (MSE) of 0.0152. The final model achieved: 

• Training accuracy (R2 score): 98% 

• Testing accuracy (R2 score): 97% 
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The model's performance is visualized in Figure 9, showing actual vs. predicted programming 

fundamentals marks. 

 

Figure 9. Regression line plot of actual and predicted programming fundamental scores for KNR 

4.2.3. RFR model 

The model achieved an R² score of 80% on the training set and 79% on the test set, with a mean 

squared error (MSE) of 0.00128%. The five regression slope coefficient values and interpretation are listed in 

Table 7. 

Table 7. RFR Slope Coefficients& Influence 

Independent Variable Coefficient Influence 

ICT 0.294 Strongest predictor of programming 

performance 

English Composition and 

Comprehension 

0.239 Second strongest predictor 

Applied Physics 0.231 Third strongest predictor 

Discrete Structures 0.177 Fourth strongest predictor 

SSC obtained marks 0.037 Weak positive influence 

HSSC obtained marks 0.022 Weakest positive influence 

 

All predictors showed positive influences on programming marks, with course-specific marks 

having a stronger impact than general academic performance (SSC and HSSC marks). 

Furthermore, the actual y values (actual programming marks) and predicted (Ý) values (predicted 

programming marks) are plotted along with both regression lines, as shown in Figure 10. 

4.2.4. GBR model 

The GBR model achieved an R² score of 86% on the training set and 84% on the test set, with an 

MSE of 0.00740%. The five regression slope coefficient values and interpretation are listed in Table 8. 

Similar to the RFR model, all predictors showed positive influences, with course-specific marks 

having a stronger impact than general academic performance.  
 

4.2.5. LGBMR model 

The model was initially trained with default parameters and then refined with specific parameter 

values to address overfitting. Cross-validation was implemented using RepeatedKFold with ten splits and 

three repeats. 
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Figure 10. Regression line plot of actual and predicted programming fundamental scores for RFR 

 

Table 8. GBR Slope Coefficients& Influence 

Independent Variable Coefficient Influence 

English Composition and Comprehension 0.382 Strongest predictor 

ICT 0.247 Second strongest predictor 

Applied Physics 0.221 Third strongest predictor 

Discrete Structures 0.069 Fourth strongest predictor 

SSC obtained marks 0.056 Weak positive influence 

HSSC obtained marks 0.024 Weakest positive influence 

 

Table 9. LGBMR Slope Coefficients& Influence 

Independent Variable Coefficient Influence 

SSC obtained marks 189 Strongest predictor 

HSSC obtained marks 120 Second strongest predictor 

ICT 100 Third strongest predictor 

Applied Physics 92 Tied for fourth strongest predictor 

Discrete Structures 92 Tied for fourth strongest predictor 

English Composition and 

Comprehension 

67 Weakest predictor 

 

The LGBMR model achieved an R² score of 88% on the training set and 85% on the test set, with an 

MSE of 0.0067. The specific coefficient values and interpretation are presented in Table 9. The LGBMR 

model suggests that general academic performance (SSC and HSSC marks) has a stronger influence on 

programming performance than course-specific marks. Furthermore, the R2 prediction is visualized using a 

regression line that represents both the actual (Y) and predicted (Ý) programming fundamentals marks, as 

shown in Figure 11. 

 

4.3. Comparison of ML Models with Evaluation Metrics 

The performance of the four regression models (LGBMR, KNR, GBR, and RFR) was evaluated 

using the R² score and Mean Squared Error (MSE). Table 10 summarizes these metrics for each model. The 

K-Nearest Neighbors Regressor (KNR) demonstrated the highest predictive power with an R² train score of 

98% and a test score of 97%. However, the Random Forest Regressor (RFR) exhibited the lowest Mean 

Squared Error (0.001), indicating the highest precision in its predictions. 
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Figure 11. Light GBM Regressor, regression line plot of actual and predicted programming fundamental 

scores 

Table 10. Models’ evaluation with regression metrics 

ML Models R2 Train Score R2 Test Score Mean Squared Error 

LGBMR 88% 85% 0.007 

KNR 98% 97% 0.008 

GBR 86% 84% 0.007 

RFR 80% 79% 0.001 

 

4.4. Evaluating the Effectiveness of Course Predictors 

The potential of various courses to predict different skill sets was analyzed. Table 11 presents the 

estimated predictive power of each course for cognitive, natural language, and mathematics skills. 

 

Table 11. Courses potential based on predictors’ estimated results 

Courses Objectives Cognitive 
Natural 

Language 
Mathematics 

Applied Physics 
Goals students should be able 

to understand the... 
0.278 0.122 0.598 

English Composition 

and Comprehension 

To enable students to identify 

the main topic ... 
0.517 0.350 0.132 

Introduction to 

Communication and 

Presentation Skills 

To develop among students the 

skills necessary... 
0.671 0.270 0.057 

Programming 

Fundamental 

Goal students should be able to 

implement in the... 
0.618 0.228 0.152 

Discrete Structures 
To develop an understanding of 

logic sets and fun... 
0.213 0.098 0.688 

 

Noted findings: 

Introduction to Communication and Presentation Skills, Programming Fundamentals, and English 

Composition and Comprehension show strong potential for predicting cognitive skills. 

English Composition and Comprehension demonstrates the highest potential for predicting natural 

language skills. 

Applied Physics and Discrete Structures exhibit the strongest potential for predicting mathematics 

skills. 
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5. DISCUSSION 

5.1. Key Findings 

The K-Nearest Neighbors Regressor (KNR) demonstrated the best overall performance with R² 

scores of 98% (train) and 97% (test). However, the Random Forest Regressor (RFR) showed the lowest 

Mean Squared Error (0.001), indicating high precision. 

Our analysis revealed that cognitive skills were the most crucial for learning programming, 

accounting for 62% of the required aptitude. Natural language and mathematics skills contributed 24% and 

14%, respectively. This finding challenges the assertion by [31] that mathematics is not an essential predictor 

of programming proficiency. 

The course predictors for the courses Introduction to Communication and Presentation Skills, 

Programming Fundamentals, and English Composition and Comprehension showed strong potential for 

predicting cognitive skills. Applied Physics and Discrete Structures demonstrated high potential for 

predicting mathematics skills. 

5.2. Implications 

Our findings suggest that a balanced approach incorporating cognitive, linguistic, and mathematical 

skills development is crucial for effective programming education. This challenges traditional curriculum 

designs that may overemphasize mathematical skills at the expense of cognitive and linguistic development. 

By identifying key aptitudes, educators can develop targeted interventions to enhance students' 

programming skills. This could potentially improve retention rates and overall success in computing 

programs. The predictive model developed in this study could inform more effective admissions criteria for 

computer science programs, helping to identify students with the highest potential for success in 

programming courses. 

Regarding the course-specific focus on predicting performance in Programming Fundamentals, our 

methodology demonstrated broader applicability across various courses in the computer science curriculum. 

Our findings revealed that different courses served as effective predictors for specific aptitudes: Introduction 

to Communication and Presentation Skills, Programming Fundamentals, and English Composition and 

Comprehension showed strong potential for predicting cognitive skills, English Composition and 

Comprehension also shows higher potential for predicting natural language skills, while Applied Physics and 

Discrete Structures demonstrated high potential for predicting mathematics skills. The successful 

implementation of our Machine Learning and Natural Language Processing approach suggests that this 

framework could be effectively adapted to predict student performance in other courses. 

 

6. CONCLUSION 

This study aimed to identify the essential aptitudes for successfully learning programming 

languages, addressing a fundamental question in computing education. Our findings reveal that cognitive 

skills play the most crucial role (62%), followed by natural language (24%) and mathematics skills (14%), 

challenging previous assertions about the relative importance of these aptitudes. The K-Nearest Neighbors 

Regressor demonstrated the best overall performance in predicting student success, while specific courses 

showed strong potential for predicting various aptitudes. These insights have significant implications for 

curriculum design, student support strategies, and admissions criteria in computer science education, 

suggesting a need for a balanced approach that incorporates cognitive, linguistic, and mathematical skills 

development. While limited by its focus on a single institution and specific courses, this study provides a 

foundation for future research, including cross-institutional and longitudinal studies. By employing a novel 

approach combining Machine Learning and Natural Language Processing techniques, we have developed a 

methodology that could be implemented in other institutions to predict student performance and inform 

curriculum design. 
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