
International Journal of Data Informatics and Intelligent Computing (IJDIIC)

Vol. 3, No. 4, December 2024, pp. 40~61

DOI: 10.59461/ijdiic.v3i4.145

Journal homepage: https://ijdiic.com 40

Investigating Aptitude in Learning Programming Language Using

Machine Learning and Natural Language Processing

Muhammad Faisal Iqbal1, Adeel Zafar1, Umer Khalil2, Afia Ishaq1
1Department of Data Science & Cyber Security, Riphah International University, Islamabad, Pakistan

2ITC Faculty of Geo-Information Science & Earth Observation, University of Twente, Enschede, The Netherlands

Article Info ABSTRACT

Article history:

Received October 07, 2024

Revised November 29, 2024

Accepted December 09, 2024

 This study investigates the relationship between prerequisite courses and skill

acquisition in programming education. It proposes a case study examining

cognitive, natural language, and mathematical aptitude indicators as

predictors of programming performance. Analyzing data from 1238

undergraduate students at Riphah International University, the research

employs Machine Learning models to predict outcomes, achieving high R2

scores and low Mean Squared Error rates. A zero-shot text classification

model identifies required aptitude skills: 62% cognitive, 24% natural

language, and 14% mathematical. These skills are mapped to predicted

programming course scores, offering a new approach to understanding

programming language aptitude. The study aims to bridge the gap between

prerequisite courses and subsequent skill development, contributing valuable

insights to computing education curriculum design.

Keywords:

Education of Computing

Programming Language

Aptitude Predictors

Machine Learning

Natural Language Processing
This is an open access article under the CC BY-SA license.

Corresponding Author: Muhammad Faisal Iqbal (e-mail: muhammadfaisal.softech@gmail.com)

1. INTRODUCTION

In today’s rapidly evolving technological landscape, computing education continues to grapple with

persistent challenges in teaching programming language effectively. Despite significant advances in research

and curriculum development [1], students often struggle to acquire the intended programming skills. While

prerequisite courses aim to prepare students for advanced programming studies, a significant gap often

remains between the intended and actual skill acquisition [2], [3], [4].

Recent studies have explored various facets of programming language learning, including the impact

of AI tools on novice learners [5], student perspectives on AI assistants [6], shared neural resources in

programming [7], and the effect of professional development on coding education [8]. Additionally,

researchers have investigated instructional modalities, conceptual transfer between languages, and

correlations with Computational Thinking skills [9].

Despite these advancements, the fundamental question persists: What aptitudes are essential for

successfully learning programming languages? Traditional approaches, such as the IBM Programmer

Aptitude Test and standardized examinations like the SAT, have shown limited efficacy in predicting

programming success [10]. Moreover, while programming logic is rooted in mathematical skills, the role of

linguistic abilities in mastering programming syntax remains underexplored.

This study aims to address this gap by developing a comprehensive methodology to assess students'

programming performance and identify the specific aptitudes influencing their learning outcomes. We

hypothesize that a combination of cognitive, linguistic (Natural Language), and mathematical skills

significantly impacts a student's ability to learn programming languages effectively.

To test this hypothesis, we will employ a mixed-methods approach, utilizing Machine Learning

(ML) and Natural Language Processing (NLP) techniques to analyze student performance data and aptitude

indicators. Our research question is: What combination of aptitudes best predicts success in learning

programming languages?

The significance of this study lies in its potential to inform more effective curriculum design and

student support strategies in computer science education. By identifying key aptitudes, educators can develop

https://ijdiic.com/
https://creativecommons.org/licenses/by-sa/4.0/

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 41

targeted interventions to enhance students' programming skills, potentially improving retention rates and

overall success in computing programs.

2. LITERATURE REVIEW

In the paper "Studying the Effect of AI Code Generators on Supporting Novice Learners in

Introductory Programming," a controlled experiment with 69 novice learners was conducted to investigate

the impact of AI code generators, specifically OpenAI Codex, on introductory programming [5]. The findings

revealed that learners with Codex access demonstrated significantly improved code-authoring performance,

with increased completion rates and higher scores. While learners with access to Codex showed better

performance in post-tests, the difference was not statistically significant. The study also highlighted the

influence of prior programming competency, with learners having higher pre-test scores benefiting more

from AI code generators, such as Codex, during their training. Additionally, qualitative feedback suggested

that Codex usage reduced stress and enhanced learners' enthusiasm for programming, although concerns

about over-reliance were raised.

The study by [6] investigates students' perspectives on using ChatGPT in programming education.

The study involved 41 undergraduate students over eight weeks, where students used ChatGPT for weekly

programming assignments. The findings indicate advantages such as quick and correct answers, improved

thinking skills, and debugging facilitation. However, limitations include potential laziness, incomplete or

incorrect answers, and concerns about professional impact. The research suggests integrating generative AI

tools into programming courses with caution, considering both advantages and limitations.

In [7] demonstrated the shared neural resources between computer code comprehension and formal

logical inference, shedding light on the cognitive processes underlying programming language learning.

However, a potential limitation lies in the study's focus on expert programmers, possibly neglecting the

nuances of aptitude development in novice learners. Further research may be needed to explore how these

neural patterns evolve with varying levels of programming experience, contributing valuable insights to

investigations into the aptitude required for learning programming languages.

In study [8] assessing the impact of continuous professional development on elementary teachers'

self-efficacy in teaching coding and computational thinking. The research emphasizes the importance of

hands-on methods and student success in enhancing teachers' confidence. The findings highlight the

effectiveness of year-long professional development in improving teacher self-efficacy, with a focus on

various coding concepts. The study provides insights into the professional growth of elementary teachers in

coding and computational thinking.

The literature reveals a noteworthy association between programming experience and enhanced

neural efficiency in figural reasoning tasks, as evidenced by the study conducted by [9]. This aligns with the

broader understanding of programming skills influencing cognitive processes and figural reasoning abilities.

However, a potential gap in the existing research is the lack of direct assessment of cognitive aptitude, such

as critical thinking, problem-solving, and logical reasoning, which are crucial components in the context of

learning programming languages. Addressing this gap is essential for a comprehensive understanding of the

cognitive aptitude required for effective programming language acquisition.

The researcher [11] investigated predictors of success in an introductory programming course,

revealing first-semester GPA and language admission test scores as significant factors. The study recognized

the complexity of predicting success, considering varied factors across engineering specializations. However,

the study did not directly address the nuanced aptitude for learning programming languages, leaving a gap

that does not align with research on programming language aptitude using machine learning and natural

language processing.

A study [12] delves into the impact of technical reading training and spatial skills training on novice

programming ability, revealing that a CS-focused technical reading intervention yields larger programming

gains than a standardized spatial intervention. The research underscores the distinctiveness of cognitive skills,

emphasizing the relevance of technical reading and spatial abilities to programming success. However, a

notable limitation is the potential lack of generalizability due to a small, homogeneous sample with high

spatial abilities. The study conducted during the COVID-19 pandemic introduces confounding factors, urging

caution when applying findings to diverse learner populations or alternative contexts.

The study about neuroimaging [13] delves into the neural underpinnings of reading, visualization,

and coding in novice programmers, using fNIRS to identify distinct brain activation patterns in occipital,

parietal, and frontal cortices. While shedding light on the cognitive processes involved in coding, the study

faces limitations, including a restricted participant pool from a single university, potentially limiting

generalizability. The reliance on fNIRS introduces the risk of false negatives, and the study's construct

validity is challenged by the multifaceted nature of spatial abilities. Acknowledging these limitations, the

research underscores the need for further exploration into alternative experimental paradigms and a broader

focus on specific programming activities to strengthen the study's findings.

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 42

To address a gap in the literature on instructional modalities in programming education by

investigating the effectiveness of audio, text, or combined explanations for code comprehension. Rooted in

educational psychology, the research focuses on the modality effect and its implications for instructional

design, contributing to ongoing discussions on improving programming education methodologies [14].

However, limitations include a narrow focus on the modality effect, potential oversight of other influencing

factors, limited discussion on sample characteristics, and questions about generalizability. The replication

nature of the study may also restrict its applicability to diverse educational settings, suggesting a need for

future research with more comprehensive variables and larger, more diverse samples.

The study [15] explored conceptual transfer in the context of transitioning from procedural Python

to object-oriented Java. The study underscores the significance of semantic transfer based on syntax

similarities and introduces a validated Model of Programming Language Transfer (MPLT). Emphasizing the

need for deliberate semantic transfer interventions, the findings contribute a validated model and pedagogical

guidelines for educators. However, limitations include potential generalizability issues due to the specific

focus on this programming language transition, sample size constraints with relatively novice programmers,

and the reliance on mixed methods, which may introduce biases. The study's duration and scope may also

limit insights into long-term conceptual transfer, and external factors such as individual learning styles could

impact results.

To examine undergraduate students' performance on iterative and recursive programming tasks,

highlighting significant differences in success rates between these problem framings. Notably, iterative

versions excel in non-branching numeric computation, while recursive versions outperform in array

classification. The research underscores the impact of contextual factors like experience, gender, ethnicity,

and spatial ability on programming performance, providing nuanced insights into language learning [16].

However, limitations include a potential lack of generalizability, reliance on self-reported data posing

reliability concerns, and specificity to certain languages and curricula, limiting broader applicability. Despite

these constraints, the study yields valuable insights into student performance and error patterns in iterative

and recursive programming scenarios.

The study [17] investigated the correlation between Computational Thinking (CT) skills and

proficiency in ChatGPT-based software development. The study found that CT skills were predictive of the

ability to develop software using ChatGPT. However, the research has limitations, such as a narrow focus on

CT skills, reliance on a single task for assessment, and potential age-related and generalizability concerns.

Nevertheless, the study offers valuable insights into the evolving competencies of programmers using

advanced tools like ChatGPT, laying the groundwork for understanding the skills required in this context.

The researcher in [18] utilized machine learning algorithms to predict academic performance in

middle- and high school students, revealing the significant influence of factors like physical activity, stress,

family size, parent’s marital status, food intake, prior academic performance, and obesity on academic

outcomes. Despite its valuable insights, the study's limitations include a sample population confined to a

metropolitan city, potentially restricting generalizability to rural settings. The reliance on self-reported

questionnaires for stress assessment introduces subjectivity, prompting the need for more objective stress

measurement techniques. Acknowledging low variability in body weight raises concerns about

generalizability, emphasizing the importance of diverse participant pools in future research for a

comprehensive understanding of academic performance predictors.

The dissertation [19] comprehensively investigated the understanding of computer programs from

computational and cognitive standpoints. The study evaluates code models' comprehension, explores

behavioural responses to code, and employs neuroimaging to study the neural bases of code comprehension.

While contributing significantly to the understanding of cognitive processes in code comprehension, the

research suggests future directions, including applying findings to computer science education and exploring

separate architectures for distinct reasoning tasks. However, the study has limitations, such as a narrow focus

on code comprehension, potential ecological validity concerns in behavioural metrics, and insufficient

exploration of cognitive differences across programming languages. The dissertation also highlights the need

to address challenges and biases in training large-scale language models and calls for explicit methodologies

for applying neuroimaging results to computer science education.

Study [20] investigates the prediction of Python programming and debugging skills through a

combination of intermittent knowledge assessments, individual psychometrics, and resting-state EEG

measures. The research highlights the significance of declarative knowledge assessments, particularly post-

module quizzes, in predicting multiple-choice test accuracy, programming accuracy, and debugging

accuracy. Despite the valuable insights into the interplay between cognitive characteristics and declarative

knowledge, the study has limitations. Its narrow focus on Python programming may restrict generalizability,

and its reliance on intermittent knowledge assessments might overlook crucial aspects of programming skills.

The use of online platforms introduces variability, and the sample's lack of prior programming experience

raises questions about the study's broader applicability. Further, the validity of resting-state EEG measures

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 43

for predicting real-world programming expertise requires additional validation. Lastly, the study's reliance on

self-paced online learning may limit its generalizability to more structured educational settings.

In [21], click or tap here to enter text employed functional magnetic resonance imaging (fMRI) to

investigate neural representations of computer programs, revealing insights into how specific brain regions

encode static and dynamic code properties. The study's mapping of brain representations to machine learning

models enhances our understanding of the intricate connection between the human brain and code

representations, showcasing the potential application of neuroscience in deciphering programming cognition.

However, limitations include a focus on a dataset with simple Python programs, potentially restricting

generalizability, an emphasis on comprehension tasks, and the need for further exploration of brain-code

mappings across diverse programming languages. Sample size concerns and the evolving nature of

neuroimaging technology also prompt considerations for refining future research.

In [22] underscored the importance of Computational Thinking (CT) education in fostering essential

skills such as problem-solving and logical reasoning. They discuss the current emphasis on CT in education,

citing initiatives like "CT for All" and various standards. The authors present four studies highlighting the

effectiveness of metaphors in teaching CT concepts, particularly in programming education. Identified

challenges encompass the need for clear CT competencies, efficient use of metaphors, exploration of

pedagogical strategies and technologies, teacher professional development, and the assessment of CT

competencies. However, limitations include a primary focus on primary education, potential oversights in

discussing challenges, and a perceived emphasis on the need for further research without comprehensive

solutions.

The study by [23] introduces the Programming-oriented Computational Thinking Skills (P-CTS)

scale, assessing conceptual knowledge, algorithmic thinking, and evaluation in the context of programming

education. The findings underscore the importance of programming experience, emphasizing the critical

threshold of over one year for skill enhancement. Notably, the research highlights gender differences in

evaluation skills, contributing valuable insights to inclusive programming education. However, limitations

include a focus on university students, raising questions about generalizability to other educational levels,

and the need for further exploration regarding the scale's applicability in interdisciplinary contexts or STEM

education. Additionally, the study suggests avenues for future research to delve into specific factors

influencing gender differences in evaluation skills, enhancing the scale's robustness and applicability.

The study by [24] delves into the cognitive benefits of learning to code, asserting that coding skills

share thinking processes with mathematical Modelling and creative problem-solving. The research presents

empirical evidence supporting the potential transfer effects of coding skills to other cognitive domains,

underscoring the necessity for explicit training to facilitate such effects. Despite the promising evidence, the

study acknowledges limitations, including the absence of a definitive causal relationship and potential

confounding factors. The meta-analytical approach's limitations are recognized, emphasizing the need for

more precise assessment tools and further research to unravel the intricate mechanisms and conditions

influencing the transferability of coding skills.

Researchers [25] investigated the neurocognitive processes in code comprehension, using

electrophysiological measures to reveal N400 effects for semantic congruencies and P600 effects for

syntactic anomalies in Python code. The study suggests that expert programmers prioritize structural aspects

over semantics, emphasizing the incremental nature of code comprehension. However, limitations include the

cross-sectional design hindering causal inferences, a focus on Python programmers limiting generalizability,

and the exclusive emphasis on certain code violations overlooking broader aspects of comprehension.

Addressing these limitations in future research is crucial for a more comprehensive understanding of the

cognitive processes involved in programming language learning.

Study [1] tackled challenges in teaching introductory programming through the HTP programming

application, designed for early problem identification and intervention. Utilizing action research, the study

focuses on students at the Polytechnic of Guarda, yielding positive outcomes in monitoring and a predictive

neural network model for early failure detection. However, limitations include context-specific effectiveness,

potential bias in student engagement, and uncertainties introduced by external factors like the COVID-19

pandemic, emphasizing the need for cautious interpretation and further validation.

In this era, computer programming plays a significant role in solving real-life problems in every

domain. The field usually resembles the taxonomy of science, technology, engineering, and mathematics

(STEM) areas. Programming languages are also like natural languages. Empirically, minimal research has

been evaluated on the cognitive aspect of programming to understand the human mind and has the power to

change educational practices [26]. Thus, it shows that programming is specifically like natural language.

However, as their proposed framework explains, computer programming and natural language are based on a

set of building blocks, such that words and phrases are specifically composed in natural language. Secondly,

computer languages are based on variables. Moreover, it explains the criteria for these building blocks to

combine and create new meanings from them.

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 44

A recent study by [27] investigated the relationship between a second natural language (L2) and a

programming language. However, their purpose was to explore the 1st year students’ (College of Engineering

and Applied Sciences at Cincinnati University) concepts of computing with a 1st year engineering

curriculum. Moreover, students’ course performance is evaluated based on previous and ongoing experiences

with SLA and accounted for through their previous knowledge of programming languages. They set the

criteria for a second natural language that at least one foreign language course has to be taken or studied (e.g.,

Spanish, German, French, and Italian). Secondly, for the computing language, a single course must be studied

previously at the university level or in high school. They said in their study that they used non-parametric

approaches to discover the significant differences between those who experienced a second natural language

and those who did not. Thus, their statistical findings explain that there is no inconclusive relationship

between them, but further study will be more appropriate.

Additionally, a study was conducted to measure the programming skills of high school (K-12)

students [28]. This research was carried out on a group of students at a large university in the Pacific

Northwest of the United States. The work aims to measure the effects of previous programming experience in

introductory programming courses. Secondly, they evaluated the previous programming knowledge with the

introductory programming course midterm and final term assessments, as well as the survey and aptitude test.

Thus, their findings explain the mismatch or differences between the results of surveys and aptitude tests.

The results of the survey reveal that previous knowledge, particularly that obtained in high school, has only a

minor impact on midterm performance, while the aptitude performance of the students has a crucial impact

on both the midterm and final term in the introductory programming course.

A particular study was also conducted on problem-solving as a predictor of programming

performance [29]. However, the purpose of the research specified the correlation of problem-solving ability

with their academic performance in 1st year programming courses. Moreover, their limitation explains that

they used five specific variables in the study, such that a student's achievements in a programming course are

set as a dependent variable. As for independent variables, they defined four aptitude tests composed of

predictors: logical reasoning, non-verbal reasoning, numerical reasoning, and verbal reasoning. Notably, each

student's participating group consists of 379. Nevertheless, their finding indicates a correlation between

students' logical reasoning, numerical reasoning, verbal logic, and performance in computer programming

modules. Secondly, their study mentions no correlation between students' non-verbal reasoning and

performance in computer programming modules.

Countless instructors and educators claim that innumerable students are facing difficulty in learning

1st-year University or institution computing science courses. Thus, various initiatives are assessed to support

student’s academic success. University instructors provide several forms of academic support with the

programme, such as learning strategies that should be discussed with students. The forum is named

"Academic Enhancement Program" (AEP), which was invented and is active by the School of Computing

Science and the Learning Commons at Simon Fraser University. This particular forum provides learning

strategies for 1styear CS University courses from late 2006. In parallel to these learning strategies, the

authors in [30] came up with another strategy to improve or enhance the learning experience of students that

focused on peer instruction and active learning with audience response systems and was named “i-clickers".

In their study, they defined three variables such as predictors (MID, WIC, and FIN), which were used in

ordinary multiple regression analysis and will be analyzed for the potential of these activities over course

success. The limitation of the study is based on the introductory course CS, which is offered in the 2013 Fall

Semester and is composed of 363 students. Their findings indicate that the weighted i-clicker is not a very

suitable predictor for the final exam score.

Nonetheless, a recent study by [31] linked natural language aptitude to atomic differences in

learning programming languages. In their study, they believe that natural language itself is a strong predictor

for learning and coding programming languages, which signals that learning a new programming language

may be parallel in terms of learning a new natural language. However, they described various variations of

the findings in their study, such that behavioural and neural (resting-state EGG) are the indicators of

measuring language aptitude, whereas numeracy and fluid cognitive measures, i.e., fluid reasoning, working

memory, and inhibitory control, were defined as the predictors. On the other hand, researchers also suggested

that programming languages can be predicted with the predictor's mathematical aptitude [32]. Chomsky's

theory, based on formal language, recently defined accurate sentence building in natural languages as an

origin tool in mathematics theory and programming languages [33].

The possible limitation of the present approaches, as determined by the literature review, is that

previously, no single educational case study existed that investigated the aptitude predictors collectively, such

as cognitive, natural language, and mathematics. This is where the novelty of the present work comes in

trying to fill this gap by undertaking a comprehensive study that touches on all aspects of aptitude for

learning programming languages. Firstly, a large undergraduate academic record and course objectives

dataset related to Pakistan's universities are employed in this study. Secondly, the study evaluates the

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 45

developed dataset using several ML algorithms and uses an NLP state-of-the-art pre-trained text-based

algorithm. Thirdly, it evaluates all the models based on error metrics. Lastly, it compares all the employed

models to select the most effective and best-performing model.

3. METHODOLOGY

The complexity of understanding programming language aptitude necessitates a rigorous and

systematic research approach.

Figure 1. Flow chart of the implemented methodology for this study

Table 1. Data Sources and Characteristics

Index Data Sources Key Characteristics

1 Student’s Academic Scores

Secondary School Certificate (SSC) scores

Higher Secondary Certificate (HSSC) scores

First and second-semester course scores, with

emphasis on programming fundamental core courses

2 Course Outlines

Analyzed to determine the specific types of skills

required for each course

Skills categorized into cognitive, natural language,

and mathematics

Mapped to the programming fundamental scores to

estimate individual student skills

This single case study was designed to investigate the aptitude skills necessary for learning a

programming language at Riphah International University Islamabad I-14 Campus, Islamabad. By employing

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 46

a carefully structured research design, our study aimed to capture the multifaceted nature of programming

language learning through two primary data sources, as detailed in Table 1.

The methodological architecture, visually represented in Figure 1, provides a holistic framework for

our investigative process. This approach allows for a nuanced examination of the various skills and factors

that potentially contribute to successful programming language acquisition.

3.1. Dataset Gathering

Understanding the right data is crucial to any research. This section provides a comprehensive

overview of the datasets utilized in our research, detailing the sources, composition, and characteristics of the

undergraduate student and course objective datasets. By providing a description of data collection and

preprocessing, we establish the foundation for our investigation into programming aptitude skills. The dataset

for this case study was collected from the Department of Computer Science and Software Engineering. Two

distinct datasets were compiled, as detailed in Table 2.

Table 2. Overview of Gathered Datasets

Datasets Sample Counts

Undergraduate student dataset 1238

Course’s objective dataset 15

3.1.1. Undergraduate Student’s Dataset

The undergraduate student dataset forms the core of this study’s analysis, capturing academic

records from students enrolled in two disciplines: Bachelor of Science in Software Engineering (BSSE) and

Bachelor of Science in Computer Sciences (BSCS). It includes Secondary School Certificate (SSC) and

Higher Secondary School Certificate (HSSC) marks, academic records from the fall 2019 and spring 2020

semesters, and programming fundamental marks for all students.

Notable characteristics of the dataset are that some records may be incomplete due to semester-

specific course requirements or student withdrawals. Certain SSC and HSSC records were missing from the

original data sheets. The dataset was consolidated by merging records based on student roll numbers. Due to

missing variables and elective course choices, the dataset is imbalanced. The dataset comprises 1238 student

records with 19 attributes, including:

• Identification: Roll Number

• Prior Education: SSC Marks, HSSC Marks

• Course Marks: 16 different courses, including Programming Fundamentals (dependent

variable)

All attributes except Programming Fundamentals are independent variables.

3.1.2. Courses Objective Dataset

The course objective dataset plays a pivotal role in this study by linking specific course goals to

programming fundamental performance. This mapping helps identify the key aptitude skills necessary for

programming success. Key features include:

• Source, i.e., course outlines from the Computer Science and Software Engineering

Department

• Attributes, i.e., Courses (15 instances) and Objectives (course-specific criteria and aims)

• Nature, i.e., Text-based dataset reflecting natural language

Courses included:

1. Introduction to Information and Communication

2. English Composition and Comprehension

3. Applied Physics

4. Discrete Structures

5. Data Structures and Algorithms

6. 3D Modelling

7. Communication and Presentations Skills

8. Linear Algebra

9. Pre-Calculus-1

10. Pre-Calculus-2

11. Probability and Statistics

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 47

12. Life and Living

13. Calculus and Analytical Geometry

14. Digital and Logic Design

15. Programming Fundamentals

Each course has tailored objectives, which may overlap with other institutions but are specific to this

university's curriculum.

3.2. Aptitude Abilities and Mapping

Expanding on the dataset descriptions, this section outlines our systematic approach to identifying

and mapping the aptitude abilities that are essential for programming language learning. We detail our

research focus, text classification model, and the innovative process of correlating course objectives with

student performance in programming fundamentals.

3.2.1. Research Focus

This study is centred on identifying the key aptitudes and abilities that influence programming

language learning, focusing on three key areas, i.e., cognitive, natural language, and mathematical skills.

We employ these categories to estimate the probability of each aptitude's influence on programming

language learning.

3.2.2. Text Classification Model

To effectively analyze course objectives and map them to the identified aptitude categories, we

employ a pre-trained zero-shot text classification model with the following key characteristics:

• Training Dataset, i.e., Multi-Genre Natural Language Inference (Multi-NLI), comprising

433,000 sentence instances

• Input, i.e., Course objective corpora (textual data)

• Output, i.e., probability estimates for each aptitude category (cognitive, natural language,

mathematics)

The model classifies text sequences using relevant labels, accommodating various domains such as

education, politics, astronomy, etc.

3.2.3. Aptitude Mapping

The estimated aptitude abilities derived from course objectives are mapped to students’ performance

in programming fundamentals. This mapping process involves predicting programming fundamental scores

using Machine Learning (ML) models and correlating these predictions with the estimated aptitude abilities

from the text classification model.

3.2.4. Feature Selection

For ML modelling, we selected a subset of features from the original dataset. The total number of

features used was 7, while the selection criteria were features with minimal missing data, and the main

purpose was to enhance model accuracy and reliability.

The subsequent sections will detail the specific attributes used and the ML models employed for

predicting programming fundamental scores.

3.3. Implementation

3.3.1. Dataset Overview

The implementation phase utilized a student dataset comprising 18 features, including identification,

prior education marks, and various course marks. This dataset focused on students who completed the

programming fundamentals course alongside elective and core subjects. Due to variations in course timing,

some missing values were present in the dataset. However, comprehensive academic records (SSC and

HSSC) were available for all students, minimizing the impact of missing data.

3.3.2. Imputation Technique

To address missing course mark values, we employed the K-Nearest Neighbor (KNN) imputation

technique. This method, while computationally intensive for large datasets, proved effective and highly

accurate for our small to medium-sized datasets. The KNN imputer computed distances between new points

and training points, selected the k closest data points based on distance, and applied appropriate distance

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 48

metrics depending on the data type. Figure 2 illustrates the workflow for filling in missing values in a

student's record.

Figure 2. KNN imputation workflow for student’s regression-based dataset

3.3.3. Data Preprocessing

Data preprocessing was crucial to address inconsistencies in grading scales between SSC/HSSC

marks (0-1050, 0-1100 scale) and other variables (0-100 scale). We normalized all features using min-max

scaling to a range of 0 to 1, ensuring data generalization and improving machine learning model

interpretation. This transformation allowed for more accurate analysis and comparison across different

academic measures.

3.3.4. Correlation Analysis

To assess the relationships within the dataset, we conducted a correlation analysis between

dependent and independent variables. Our findings revealed that all attributes showed strong self-correlation,

as expected. The dependent variable "Programming Fundamentals" positively correlated with most

independent variables, except for "SSC/HSSC Marks," which showed a different relationship pattern. This

analysis provided valuable insights into the factors potentially influencing success in programming

fundamentals. The results are illustrated in Figure 3.

3.3.5. Implementation Strategy

This implementation strategy, combining imputation techniques, feature scaling, and correlation

analysis, ensured a robust examination of the factors influencing success in programming fundamentals. By

accounting for data complexities and variations in student academic histories, we established a solid

foundation for further analysis and model development in our study of aptitude skills necessary for learning

programming languages.

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 49

Figure 3. Programming Fundamental correlations along with independent variables

3.4. Modeling Using Machine Learning (ML) and Natural Language Processing (NLP)

In this section, we outline a comprehensive framework for predicting programming fundamental

marks through machine learning (ML) and natural language processing (NLP) techniques. This approach

leverages state-of-the-art regression models and zero-shot text classification methods to map aptitude skills

and predict student performance.

We divided the data into training (80%) and testing (20%) sets using scikit-learn's train_test_split

function, with random_state=45 for consistency. Four state-of-the-art ML models were employed to predict

programming fundamentals marks.

3.4.1. KNeighbors Regression (KNR)

The KNeighbors Regression (KNR) is a supervised machine learning method used for predicting

numerical values by evaluating the similarity between data points [34]. Distance metrics such as Euclidean,

Manhattan, and Minkowski are used for continuous variables. The Euclidean distance formula is mentioned

in Equation 1.

√∑ (𝑦𝑖 − 𝑥𝑖)2𝑛
𝑖=1 (1)

Selecting an appropriate K value is crucial to balance between overfitting (small K) and underfitting

(large K). While rare exceptions exist, higher K values are generally recommended to avoid overfitting.

3.4.2. Random Forest Regression (RFR)

Random Forest Regression (RFR) is a robust ensemble learning technique that leverages multiple

decision trees to enhance prediction accuracy. By combining bootstrapping, bagging, and aggregation, RFR

mitigates overfitting and improves generalization performance [35]. The model's performance is determined

by the aggregated results of these trees.

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 50

The RFR model is constructed by drawing an input variable X from the training set, creating a

specified number (𝑁) of regression trees, after (𝑁) variables in the RFR model and trees such as {{𝑇(𝑖)}}𝑖
𝑁

are increased, averaging predictions from all decision trees. The predictor of regression after n variables and

m trees is mentioned in Equation 2.

𝑓𝑟𝑓
𝑁 (𝑖) =

1

𝑁
∑ 𝑇(𝑖)𝑁

𝑁=1 (2)

RFR promotes tree diversity through bagging, which involves randomly sampling training data with

replacement. When constructing trees, RFR randomly selects a subset of features and chooses the best feature

and split point from this subset. This approach reduces the correlation between trees and lowers

generalization error [36].

RFR trees grow without pruning, making them relatively lightweight. Out-of-bag (OOB) subsets,

formed by data points not included in the training, can be used to estimate individual tree performance [37].

As the number of trees increases, the generalization error decreases, indicating reduced overfitting risk.

3.4.3. Gradient Boosting Regressor (GBR)

Gradient Boosting Regression (GBR) is an ensemble technique designed to sequentially improve

prediction accuracy by adding models iteratively. Each new model addresses the errors of the previous

ensemble, making GBR effective for reducing prediction errors [38]. GBR generalizes by optimizing any

differentiable loss function using gradient descent [39]. GBR comprises three components: a loss function to

be minimized, a weak learner for predictions, and an additive model combining weak learners to reduce the

loss function [40]. The key innovation is constructing new weak learners strongly correlated with the

negative gradient of the loss function, computed with respect to the entire ensemble. This approach allows for

arbitrary loss functions, resulting in sequential error fitting for typical squared-error loss.

3.4.4. Light GBM Regressor (LGBMR)

Light GBM Regressor (LGBMR) is a cutting-edge machine learning method known for its

efficiency in both data regression and categorization tasks. It employs innovative techniques like Exclusive

Feature Bundling (EFB) and Gradient-based One-Side Sampling (GOSS) to optimize performance and

reduce processing times [41]. LGBMR outperforms traditional methods in data scanning, sampling,

clustering, and classification, making it superior in terms of memory usage, processing time, and

computational efficiency. Its advantages include faster training, optimal memory utilization, satisfactory

accuracy, parallelism, and large-scale data processing capabilities.

3.4.5. Aptitude Mapping Using NLP

Aptitude Mapping Using NLP leverages zero-shot learning techniques to classify unseen aptitude

labels within course objectives. By exploiting semantic relationships in a high-dimensional vector space, this

method enables accurate classification without requiring extensive labelled data [42].

For aptitude mapping, a pre-trained NLP model for zero-shot text classification is deployed on a

text-based course objective dataset. The process involves installing necessary libraries and loading the zero-

shot classification pipeline, providing the model with text sequences (course objectives) and premise

candidate labels (predictors: cognitive, natural language, and mathematics). The model classifies courses

based on their potential abilities or the predictor with the greatest influence.

This approach estimates values for each listed course and its objectives, effectively mapping

aptitudes without requiring extensive labelled training data. Zero-shot learning models require the presence

of a labelled training set of seen and unseen classes, with both classes related in the semantic space where

seen class knowledge can be transferred to unseen classes [42].

4. RESULTS AND DISCUSSION

This section presents the results of our investigation into aptitude skills necessary for learning

programming languages. Using undergraduate student data from Riphah International University’s Islamabad

campus, our analysis identifies cognitive abilities as the primary aptitude influencing programming

performance with a potential range of 62%. Additionally, 24% of natural language skills and 14% of

mathematics skills are necessary. As a result, these findings are significant, and in an educational setting, it is

crucial to focus on students' cognitive abilities, as these may have a bearing on their future learning.

Furthermore, natural language and mathematics skills are also important in the context of learning

programming languages.

The single educational case study was designed to delve deeper into the aptitude skills required for

learning programming languages. However, to accomplish this task, we employed novel approaches to

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 51

identify the specific aptitude skills. Our methodology encompasses ML and NLP models that are used to

address a specific problem. The results demonstrate that we can predict students' scores in the fundamental

programming course based on their previous courses and academic scores. Second, course objective

predictors represent the required skills, namely cognitive, natural language, and mathematics. These

predictors should be applied to the predicted scores of PF to determine the skill set a student possesses in

order to pursue their journey in the programming language domain. Additionally, previous academic courses

also define the abilities attained by students, making it easier to identify their specific ability traits. Therefore,

when designing curricula, instructors need to focus on students' abilities based on their previous courses. This

will make it easier for students to tackle their further learning aspects. Moreover, by employing this

methodology, instructors can also predict the learning of programming language courses, leading to more

effective learning paradigms. Figure 4 illustrates the essential aptitude skills required for learning

programming languages.

Figure 4. Programming language learning aptitude abilities.

4.1. Data Preparation

4.1.1. Assessment of Missing Data

Several courses contain varying levels of missing data, as outlined in Table 3. These missing values

are either due to administrative errors or course withdrawals by students.

Table 3. Missing Values Count Per Variable

Index Courses Missing Values

1 Roll Number 0

2 SSC Obtained Marks 1120

3 HSSC Obtained Marks 283

4 Introduction to Information and Communication Marks 623

5 English Composition and Comprehension Marks 624

6 Applied Physics Marks 634

7 Discrete Structures Marks 865

8 Data Structures and Algorithms Marks 1236

9 3D Modeling Marks 1236

10 Communication and Presentations Skills Marks 1237

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 52

11 Linear Algebra Marks 1236

12 Pre-Calculus – I Marks 1187

13 Pre-Calculus – II Marks 1237

14 Probability and Statistics Marks 1236

15 Life and Living Marks 1237

16 Calculus and Analytical Geometry Marks 1022

17 Digital and Logic Design Marks 1236

18 Programming Fundamentals Marks 621

Nine features exhibit the most significant amount of missing data, with some courses showing up to

95% missing entries, as highlighted in Table 4. These courses are considered for removal due to the

infeasibility of imputation.

Table 4. Features with Maximum Missing Data

Index Features Maximum

Present

Values

1 Data Structures and Algorithms Marks 1236

2 3D Modeling Marks 1236

3 Communication and Presentations Skills Marks 1237

4 Linear Algebra Marks 1236

5 Pre-Calculus – I Marks 1187

6 Pre-Calculus – II Marks 1237

7 Probability and Statistics Marks 1236

8 Life and Living Marks 1237

9 Digital and Logic Design Marks 1236

4.1.2. Dropping Features

Handling missing data effectively is essential for improving model performance and ensuring data

integrity. In cases where features contain an excessive amount of missing values, such as those listed in Table

3, imputation may not be feasible. Features with over 95% missing data are considered unreliable and are

thus excluded from the dataset.

Python's Pandas library offers tools to efficiently drop these features from the dataset. Consequently,

features such as mentioned in Table 4, have been removed from the analysis. These actions streamline the

dataset by retaining only the most relevant and complete records for subsequent analysis.

4.1.3. Identification of Outliers in Data

Outliers are data points that significantly deviate from the general trend of a dataset, often referred

to as anomalies, deviants, or discordant observations [43]. In the student academic records dataset, outliers

are observed in the SSC Obtained Marks and HSSC Obtained Marks features. Other features, such as

Introduction to Information and Communication, English Composition and Comprehension, Applied Physics,

Discrete Structures, and Programming Fundamentals, were not found to contain outliers based on descriptive

statistical analysis.

4.1.4. Outliers in SSC Obtained Marks

This feature displayed a negatively skewed distribution on the right tail and minimal positively

skewed values on the left tail. While SSC marks should range from 0 to 1,050 or 1,100, the observed

distribution ranged from 0 to 1,200 (Figure 5). Addressing these outliers is crucial for achieving a

symmetrical distribution, which is essential for the accurate calculation of quartiles, mean, median, and

mode.

4.1.5. Outliers in HSSC Obtained Marks

The HSSC obtained marks data exhibited outliers (Figure 6), with positive skewness on the left tail

and negative skewness on the right. The observed data ranged from below 0 to 5,000, with an expected upper

bound of 1,150. These outliers distort the frequency distribution and impact the interpretability of the mean,

median, and mode.

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 53

Figure 5. Attribute SSC Obtained Marks Outliers

Figure 6. Attribute HSSC obtained marks outliers

4.1.6. Handling Outliers in SSC Obtained Marks

To address the outliers in the "SSC Obtained Marks" feature, we employed the following

methodology. Utilized the quantile() function from the Python Pandas library to estimate value quantiles

along the index axis. Determined the distribution of variable values, including lower and upper bounds.

Initialized variables for the lower bound (LB = 0.1) and upper bound (UB = 0.95) effectively trimmed the

data to the 10th-95th percentile range, as shown in Table 5.

Table 5. SSC Obtained Marks Data Distribution Range

Bounds Range SSC Obtained Marks Min/Max

Data Range

Lower Bound 0.1 562

Upper Bound 0.95 968

Established criteria for "SSC Obtained Marks" feature values based on the determined ranges.

Filtered true values and removed false values from the feature index. The resulting symmetric data

distribution is illustrated in Figure 7, with the box plot quartile values (Minimum: 570, Q1: 685, Q2

(Median): 773, Q3: 841, Maximum: 967).

This approach effectively addressed the outliers, resulting in a more evenly distributed dataset

suitable for further analysis.

4.1.7. Handling outliers in feature HSSC obtained marks

The HSSC Obtained Marks feature contains outliers that result in a skewed distribution, with

significant differences between the mean, median, and mode. To mitigate this issue, the quantile() function

from Python's Pandas library was used to identify and manage the outliers. This method estimates quantiles

to define the boundaries for acceptable data ranges.

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 54

Figure 7. SSC obtained marks data distribution and box plot

Through quantitative analysis, the lower bound (LB) was set at the 10th percentile (0.1) and the

upper bound (UB) at the 95th percentile (0.95). This approach removes extreme data points, retaining values

within the 10-95% range of the distribution, as shown in Table 6.

Table 6. HSSC Obtained Marks Data Distribution Range

Bounds Range SSC Obtained Marks Min/Max

Data Range

Lower Bound 0.1 565.0

Upper Bound 0.95 909.3

After filtering based on these bounds, outliers were removed, and the data exhibited a more balanced

distribution. This is reflected in the box plot (Figure 8), with quartile values as follows: minimum = 566, Q1

= 628, Q2 = 685, Q3 = 755 and maximum = 909. The removal of outliers ensures a more accurate

representation of the data.

Figure 8. HSSC Marks data distribution and boxplot

4.2. Machine Learning Models for Student Performance Prediction

4.2.1. Train / Test Split Data Preparation

For all models, the dataset was split into 80% training and 20% testing sets, with a random state of

45 to ensure reproducibility.

4.2.2. KNR Model

The KNR model was optimized by iteratively testing K values up to 20. The optimal K value of 4

was determined based on the minimum mean squared error (MSE) of 0.0152. The final model achieved:

• Training accuracy (R2 score): 98%

• Testing accuracy (R2 score): 97%

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 55

The model's performance is visualized in Figure 9, showing actual vs. predicted programming

fundamentals marks.

Figure 9. Regression line plot of actual and predicted programming fundamental scores for KNR

4.2.3. RFR model

The model achieved an R² score of 80% on the training set and 79% on the test set, with a mean

squared error (MSE) of 0.00128%. The five regression slope coefficient values and interpretation are listed in

Table 7.

Table 7. RFR Slope Coefficients& Influence

Independent Variable Coefficient Influence

ICT 0.294 Strongest predictor of programming

performance

English Composition and

Comprehension

0.239 Second strongest predictor

Applied Physics 0.231 Third strongest predictor

Discrete Structures 0.177 Fourth strongest predictor

SSC obtained marks 0.037 Weak positive influence

HSSC obtained marks 0.022 Weakest positive influence

All predictors showed positive influences on programming marks, with course-specific marks

having a stronger impact than general academic performance (SSC and HSSC marks).

Furthermore, the actual y values (actual programming marks) and predicted (Ý) values (predicted

programming marks) are plotted along with both regression lines, as shown in Figure 10.

4.2.4. GBR model

The GBR model achieved an R² score of 86% on the training set and 84% on the test set, with an

MSE of 0.00740%. The five regression slope coefficient values and interpretation are listed in Table 8.

Similar to the RFR model, all predictors showed positive influences, with course-specific marks

having a stronger impact than general academic performance.

4.2.5. LGBMR model

The model was initially trained with default parameters and then refined with specific parameter

values to address overfitting. Cross-validation was implemented using RepeatedKFold with ten splits and

three repeats.

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 56

Figure 10. Regression line plot of actual and predicted programming fundamental scores for RFR

Table 8. GBR Slope Coefficients& Influence

Independent Variable Coefficient Influence

English Composition and Comprehension 0.382 Strongest predictor

ICT 0.247 Second strongest predictor

Applied Physics 0.221 Third strongest predictor

Discrete Structures 0.069 Fourth strongest predictor

SSC obtained marks 0.056 Weak positive influence

HSSC obtained marks 0.024 Weakest positive influence

Table 9. LGBMR Slope Coefficients& Influence

Independent Variable Coefficient Influence

SSC obtained marks 189 Strongest predictor

HSSC obtained marks 120 Second strongest predictor

ICT 100 Third strongest predictor

Applied Physics 92 Tied for fourth strongest predictor

Discrete Structures 92 Tied for fourth strongest predictor

English Composition and

Comprehension

67 Weakest predictor

The LGBMR model achieved an R² score of 88% on the training set and 85% on the test set, with an

MSE of 0.0067. The specific coefficient values and interpretation are presented in Table 9. The LGBMR

model suggests that general academic performance (SSC and HSSC marks) has a stronger influence on

programming performance than course-specific marks. Furthermore, the R2 prediction is visualized using a

regression line that represents both the actual (Y) and predicted (Ý) programming fundamentals marks, as

shown in Figure 11.

4.3. Comparison of ML Models with Evaluation Metrics

The performance of the four regression models (LGBMR, KNR, GBR, and RFR) was evaluated

using the R² score and Mean Squared Error (MSE). Table 10 summarizes these metrics for each model. The

K-Nearest Neighbors Regressor (KNR) demonstrated the highest predictive power with an R² train score of

98% and a test score of 97%. However, the Random Forest Regressor (RFR) exhibited the lowest Mean

Squared Error (0.001), indicating the highest precision in its predictions.

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 57

Figure 11. Light GBM Regressor, regression line plot of actual and predicted programming fundamental

scores

Table 10. Models’ evaluation with regression metrics

ML Models R2 Train Score R2 Test Score Mean Squared Error

LGBMR 88% 85% 0.007

KNR 98% 97% 0.008

GBR 86% 84% 0.007

RFR 80% 79% 0.001

4.4. Evaluating the Effectiveness of Course Predictors

The potential of various courses to predict different skill sets was analyzed. Table 11 presents the

estimated predictive power of each course for cognitive, natural language, and mathematics skills.

Table 11. Courses potential based on predictors’ estimated results

Courses Objectives Cognitive
Natural

Language
Mathematics

Applied Physics
Goals students should be able

to understand the...
0.278 0.122 0.598

English Composition

and Comprehension

To enable students to identify

the main topic ...
0.517 0.350 0.132

Introduction to

Communication and

Presentation Skills

To develop among students the

skills necessary...
0.671 0.270 0.057

Programming

Fundamental

Goal students should be able to

implement in the...
0.618 0.228 0.152

Discrete Structures
To develop an understanding of

logic sets and fun...
0.213 0.098 0.688

Noted findings:

Introduction to Communication and Presentation Skills, Programming Fundamentals, and English

Composition and Comprehension show strong potential for predicting cognitive skills.

English Composition and Comprehension demonstrates the highest potential for predicting natural

language skills.

Applied Physics and Discrete Structures exhibit the strongest potential for predicting mathematics

skills.

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 58

5. DISCUSSION

5.1. Key Findings

The K-Nearest Neighbors Regressor (KNR) demonstrated the best overall performance with R²

scores of 98% (train) and 97% (test). However, the Random Forest Regressor (RFR) showed the lowest

Mean Squared Error (0.001), indicating high precision.

Our analysis revealed that cognitive skills were the most crucial for learning programming,

accounting for 62% of the required aptitude. Natural language and mathematics skills contributed 24% and

14%, respectively. This finding challenges the assertion by [31] that mathematics is not an essential predictor

of programming proficiency.

The course predictors for the courses Introduction to Communication and Presentation Skills,

Programming Fundamentals, and English Composition and Comprehension showed strong potential for

predicting cognitive skills. Applied Physics and Discrete Structures demonstrated high potential for

predicting mathematics skills.

5.2. Implications

Our findings suggest that a balanced approach incorporating cognitive, linguistic, and mathematical

skills development is crucial for effective programming education. This challenges traditional curriculum

designs that may overemphasize mathematical skills at the expense of cognitive and linguistic development.

By identifying key aptitudes, educators can develop targeted interventions to enhance students'

programming skills. This could potentially improve retention rates and overall success in computing

programs. The predictive model developed in this study could inform more effective admissions criteria for

computer science programs, helping to identify students with the highest potential for success in

programming courses.

Regarding the course-specific focus on predicting performance in Programming Fundamentals, our

methodology demonstrated broader applicability across various courses in the computer science curriculum.

Our findings revealed that different courses served as effective predictors for specific aptitudes: Introduction

to Communication and Presentation Skills, Programming Fundamentals, and English Composition and

Comprehension showed strong potential for predicting cognitive skills, English Composition and

Comprehension also shows higher potential for predicting natural language skills, while Applied Physics and

Discrete Structures demonstrated high potential for predicting mathematics skills. The successful

implementation of our Machine Learning and Natural Language Processing approach suggests that this

framework could be effectively adapted to predict student performance in other courses.

6. CONCLUSION

This study aimed to identify the essential aptitudes for successfully learning programming

languages, addressing a fundamental question in computing education. Our findings reveal that cognitive

skills play the most crucial role (62%), followed by natural language (24%) and mathematics skills (14%),

challenging previous assertions about the relative importance of these aptitudes. The K-Nearest Neighbors

Regressor demonstrated the best overall performance in predicting student success, while specific courses

showed strong potential for predicting various aptitudes. These insights have significant implications for

curriculum design, student support strategies, and admissions criteria in computer science education,

suggesting a need for a balanced approach that incorporates cognitive, linguistic, and mathematical skills

development. While limited by its focus on a single institution and specific courses, this study provides a

foundation for future research, including cross-institutional and longitudinal studies. By employing a novel

approach combining Machine Learning and Natural Language Processing techniques, we have developed a

methodology that could be implemented in other institutions to predict student performance and inform

curriculum design.

DATA AVAILABILITY STATEMENT

As the study uses the academic records from Riphah International University, it is not possible to

make the data available due to the privacy policy of the university.

ACKNOWLEDGEMENTS

As this research was conducted as part of the MS Thesis at Riphah International University so, the

authors would like to thank the Department of Computer Science and Information Technology, the Faculty,

and the Head of the Department, who permitted the use of the university's dataset for this research work.

Also, the authors would like to extend their gratitude to the programme coordinator, who allotted and helped

gather and give sequence/detail about the student's record.

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 59

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest to this work.

REFERENCES
[1] J. Figueiredo and F. Garcia-Penalvo, “Teaching and Learning Tools for Introductory Programming in University

Courses,” SIIE 2021 - 2021 Int. Symp. Comput. Educ., no. September, 2021, doi:

10.1109/SIIE53363.2021.9583623.

[2] L. T. Yong, C. Y. Qi, C. S. Yee, A. Johnson, and N. K. Hoong, “Designing and Developing a PDA Food

Ordering System Using Interaction Design Approach: A Case Study,” in 2009 International Conference on

Computer Technology and Development, 2009, pp. 68–71. doi: 10.1109/ICCTD.2009.18.

[3] I. Milne and G. Rowe, “Difficulties in learning and teaching programming - Views of students and tutors,” Educ.

Inf. Technol., vol. 7, no. 1, pp. 55–66, 2002, doi: 10.1023/A:1015362608943.

[4] M. N. Ismail, N. A. Ngah, and I. N. Umar, “Instructional strategy in the teaching of computer programming: A

need assessment analyses,” Turkish Online J. Educ. Technol., vol. 9, no. 2, pp. 125–131, 2010.

[5] M. Kazemitabaar, J. Chow, C. K. T. Ma, B. J. Ericson, D. Weintrop, and T. Grossman, Studying the effect of AI

Code Generators on Supporting Novice Learners in Introductory Programming, vol. 1, no. 1. Association for

Computing Machinery, 2023. doi: 10.1145/3544548.3580919.

[6] R. Yilmaz and F. G. Karaoglan Yilmaz, “Augmented intelligence in programming learning: Examining student

views on the use of ChatGPT for programming learning,” Comput. Hum. Behav. Artif. Humans, vol. 1, no. 2, p.

100005, 2023, doi: 10.1016/j.chbah.2023.100005.

[7] Y. F. Liu, J. Kim, C. Wilson, and M. Bedny, “Computer code comprehension shares neural resources with

formal logical inference in the fronto-parietal network,” Elife, vol. 9, pp. 1–22, 2020, doi: 10.7554/eLife.59340.

[8] P. J. Rich, S. L. Mason, and J. O’Leary, “Measuring the effect of continuous professional development on

elementary teachers’ self-efficacy to teach coding and computational thinking,” Comput. Educ., vol. 168, no.

March, 2021, doi: 10.1016/j.compedu.2021.104196.

[9] B. Helmlinger, M. Sommer, M. Feldhammer-Kahr, G. Wood, M. E. Arendasy, and S. E. Kober, “Programming

experience associated with neural efficiency during figural reasoning,” Sci. Rep., vol. 10, no. 1, pp. 1–14, 2020,

doi: 10.1038/s41598-020-70360-z.

[10] R. Asif, A. Merceron, S. A. Ali, and N. G. Haider, “Analyzing undergraduate students’ performance using

educational data mining,” Comput. Educ., vol. 113, pp. 177–194, 2017, doi: 10.1016/j.compedu.2017.05.007.

[11] J. Köhler, L. Hidalgo, and J. L. Jara, “Predicting Students’ Outcome in an Introductory Programming Course:

Leveraging the Student Background,” Appl. Sci., vol. 13, no. 21, 2023, doi: 10.3390/app132111994.

[12] M. Endres, M. Fansher, P. Shah, and W. Weimer, “To read or to rotate? comparing the effects of technical

reading training and spatial skills training on novice programming ability,” ESEC/FSE 2021 - Proc. 29th ACM

Jt. Meet. Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., pp. 754–766, 2021, doi: 10.1145/3468264.3468583.

[13] M. Endres, Z. Karas, X. Hu, I. Kovelman, and W. Weimer, “Relating reading, visualization, and coding for new

programmers: A neuroimaging study,” Proc. - Int. Conf. Softw. Eng., pp. 600–612, 2021, doi:

10.1109/ICSE43902.2021.00062.

[14] A. Zavgorodniaia, A. Hellas, O. Seppälä, and J. Sorva, “Should Explanations of Program Code Use Audio, Text,

or Both? A Replication Study,” ACM Int. Conf. Proceeding Ser., vol. 2020, pp. 1–10, 2020, doi:

10.1145/3428029.3428050.

[15] Y. Kao, B. Matlen, and D. Weintrop, “From One Language to the Next: Applications of Analogical Transfer for

Programming Education,” ACM Trans. Comput. Educ., vol. 22, no. 4, 2022, doi: 10.1145/3487051.

[16] M. Endres, W. Weimer, and A. Kamil, “An Analysis of Iterative and Recursive Problem Performance,” SIGCSE

2021 - Proc. 52nd ACM Tech. Symp. Comput. Sci. Educ., pp. 321–327, 2021, doi: 10.1145/3408877.3432391.

[17] J. Jeuring, R. Groot, and H. Keuning, “What Skills Do You Need When Developing Software Using ChatGPT?

(Discussion Paper),” ACM Int. Conf. Proceeding Ser., pp. 1–11, 2023, doi: 10.1145/3631802.3631807.

[18] S. Rajendran, S. Chamundeswari, and A. A. Sinha, “Predicting the academic performance of middle- and high-

school students using machine learning algorithms,” Soc. Sci. Humanit. Open, vol. 6, no. 1, p. 100357, 2022,

doi: 10.1016/j.ssaho.2022.100357.

[19] S. Srikant, C. Science, T. Supervisor, L. Kolodziejski, and C. Science, “Understanding Computer Programs :

Computational and Cognitive Perspectives by,” no. 2011, 2023.

[20] C. H. Kuo, M. Mottarella, T. Haile, and C. S. Prat, “Predicting Programming Success: How Intermittent

Knowledge Assessments, Individual Psychometrics, and Resting-State EEG Predict Python Programming and

Debugging Skills,” 2022 30th Int. Conf. Software, Telecommun. Comput. Networks, SoftCOM 2022, 2022, doi:

10.23919/SoftCOM55329.2022.9911411.

[21] E. H. Brain and O. F. C. Programsthe, “Representations of Computer Programs in the Human Brain,” pp. 1–30,

2022.

[22] C. Angeli and M. Giannakos, “Computational thinking education: Issues and challenges,” Comput. Human

Behav., vol. 105, p. 106185, Apr. 2020, doi: 10.1016/J.CHB.2019.106185.

[23] S. Kılıç, S. Gökoğlu, and M. Öztürk, “A Valid and Reliable Scale for Developing Programming-Oriented

Computational Thinking,” J. Educ. Comput. Res., vol. 59, no. 2, pp. 257–286, 2021, doi:

10.1177/0735633120964402.

[24] R. Scherer, F. Siddiq, and B. Sánchez-Scherer, “Some Evidence on the Cognitive Benefits of Learning to Code,”

Front. Psychol., vol. 12, no. September, pp. 1–5, 2021, doi: 10.3389/fpsyg.2021.559424.

[25] C. H. Kuo and C. S. Prat, “Computer programmers show distinct, expertise-dependent brain responses to

https://doi.org/10.1109/SIIE53363.2021.9583623
https://doi.org/10.1109/ICCTD.2009.18
https://doi.org/10.1023/A:1015362608943
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1016/j.chbah.2023.100005
https://doi.org/10.7554/eLife.59340
https://doi.org/10.1016/j.compedu.2021.104196
https://doi.org/10.1038/s41598-020-70360-z
https://doi.org/10.1016/j.compedu.2017.05.007
https://doi.org/10.3390/app132111994
https://doi.org/10.1145/3468264.3468583
https://doi.org/10.1109/ICSE43902.2021.00062
https://doi.org/10.1145/3428029.3428050
https://doi.org/10.1145/3487051
https://doi.org/10.1145/3408877.3432391
https://doi.org/10.1145/3631802.3631807
https://doi.org/10.1016/j.ssaho.2022.100357
https://doi.org/10.23919/SoftCOM55329.2022.9911411
https://doi.org/10.1016/J.CHB.2019.106185
https://doi.org/10.1177/0735633120964402
https://doi.org/10.3389/fpsyg.2021.559424

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 60

violations in form and meaning when reading code,” Sci. Rep., vol. 14, no. 1, 2024, doi: 10.1038/s41598-024-

56090-6.

[26] E. Fedorenko, A. Ivanova, R. Dhamala, and M. U. Bers, “The Language of Programming: A Cognitive

Perspective,” Trends Cogn. Sci., vol. 23, no. 7, pp. 525–528, 2019, doi: 10.1016/j.tics.2019.04.010.

[27] J. Agarwal, G. W. Bucks, K. A. Ossman, T. J. Murphy, and C. E. Sunny, “Learning a Second Language and

Learning a Programming Language: An Exploration,” ASEE Annu. Conf. Expo. Conf. Proc., 2021, doi:

10.18260/1-2--37423.

[28] D. H. Smith, Q. Hao, F. Jagodzinski, Y. Liu, and V. Gupta, “Quantifying the Effects of Prior Knowledge in

Entry-Level Programming Courses,” in CompEd 2019 - Proceedings of the ACM Conference on Global

Computing Education, 2019. doi: 10.1145/3300115.3309503.

[29] G. Barlow-Jones and D. van der Westhuizen, “Problem solving as a predictor of programming performance,” in

Communications in Computer and Information Science, 2017. doi: 10.1007/978-3-319-69670-6_14.

[30] D. Cukierman, “Predicting success in university first year computing science courses: The role of student

participation in reflective learning activities and in I-clicker activities,” in Annual Conference on Innovation and

Technology in Computer Science Education, ITiCSE, 2015, pp. 248–253. doi: 10.1145/2729094.2742623.

[31] C. S. Prat, T. M. Madhyastha, M. J. Mottarella, and C. H. Kuo, “Relating Natural Language Aptitude to

Individual Differences in Learning Programming Languages,” Sci. Rep., vol. 10, no. 1, pp. 1–10, 2020, doi:

10.1038/s41598-020-60661-8.

[32] B. Shneiderman and R. Mayer, “Syntactic/semantic interactions in programmer behavior: A model and

experimental results,” Int. J. Comput. Inf. Sci., vol. 8, no. 3, pp. 219–238, 1979, doi: 10.1007/BF00977789.

[33] V. J. Shute, “Who is Likely to Acquire Programming Skills?,” J. Educ. Comput. Res., vol. 7, no. 1, pp. 1–24,

1991, doi: 10.2190/vqjd-t1yd-5wvb-rypj.

[34] Y. Ao, H. Li, L. Zhu, S. Ali, and Z. Yang, “The linear random forest algorithm and its advantages in machine

learning assisted logging regression modeling,” 2019. doi: 10.1016/j.petrol.2018.11.067.

[35] V. Rodriguez-Galiano, M. Sanchez-Castillo, M. Chica-Olmo, and M. Chica-Rivas, “Machine learning predictive

models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support

vector machines,” Ore Geol. Rev., vol. 71, pp. 804–818, Dec. 2015, doi: 10.1016/J.OREGEOREV.2015.01.001.

[36] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001, doi:

10.1023/A:1010933404324/METRICS.

[37] J. Peters et al., “Random forests as a tool for ecohydrological distribution modelling,” Ecol. Modell., vol. 207,

no. 2–4, pp. 304–318, 2007, doi: 10.1016/j.ecolmodel.2007.05.011.

[38] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning, vol. 4, no. 4. Springer, 2006.

[39] A. Keprate and R. M. C. Ratnayake, “Using gradient boosting regressor to predict stress intensity factor of a

crack propagating in small bore piping,” IEEE Int. Conf. Ind. Eng. Eng. Manag., vol. 2017-Decem, no.

December, pp. 1331–1336, 2017, doi: 10.1109/IEEM.2017.8290109.

[40] J. Brownlee, “A gentle introduction to the gradient boosting algorithm for machine learning,” Mach. Learn.

Mastery, vol. 21, 2016.

[41] N. S. Zheng, X. W. Jiang, Y. Ao, and X. Zhao, “Prediction of tariff package model using ROF-LGB algorithm,”

ACM Int. Conf. Proceeding Ser., pp. 54–58, 2019, doi: 10.1145/3352411.3352421.

[42] L. Zhang, T. Xiang, and S. Gong, “Learning a deep embedding model for zero-shot learning,” Proc. - 30th IEEE

Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 3010–3019, 2017, doi:

10.1109/CVPR.2017.321.

[43] C. C. Aggarwal, “An Introduction to Outlier Analysis,” Outlier Anal., pp. 1–34, 2017, doi: 10.1007/978-3-319-

47578-3_1.

BIOGRAPHIES OF AUTHORS

Muhammad Faisal Iqbal is a data science professional. I hold a Bachelor's degree in Computer

Science from Sarhad University of Sciences & Information Technology and a Master's degree in

Data Science from Riphah International University, both in Islamabad, Pakistan. My professional

experience spans various domains, including Oracle Financial Applications, Database

Development, Data Science, Machine Learning, Deep Learning, Natural Language Processing, and

Multimodals. I have also provided training on software utilities and version releases to both private

and government organizations. My research interests align with the cutting-edge fields of Data

Science, Machine Learning, Deep Learning, Natural Language Processing, Multimodal,

Generative AI, and Large Language Models. He can be contacted at email:

muhammadfaisal.softech@gmail.com

Adeel Zafar is currently working as an associate professor / Head of Department at Riphah

Institute of System Engineering, Riphah International University Islamabad, Pakistan. He can be

contacted at email: adeel.zafar@riphah.edu.pk.

https://doi.org/10.1038/s41598-024-56090-6
https://doi.org/10.1038/s41598-024-56090-6
https://doi.org/10.1016/j.tics.2019.04.010
https://doi.org/10.18260/1-2--37423
https://doi.org/10.1145/3300115.3309503
https://doi.org/10.1007/978-3-319-69670-6_14
https://doi.org/10.1145/2729094.2742623
https://doi.org/10.1038/s41598-020-60661-8
https://doi.org/10.1007/BF00977789
https://doi.org/10.2190/vqjd-t1yd-5wvb-rypj
https://doi.org/10.1016/j.petrol.2018.11.067
https://doi.org/10.1016/J.OREGEOREV.2015.01.001
https://doi.org/1010933404324/METRICS
https://doi.org/10.1016/j.ecolmodel.2007.05.011
https://doi.org/10.1109/IEEM.2017.8290109
https://doi.org/10.1145/3352411.3352421
https://doi.org/10.1109/CVPR.2017.321
https://doi.org/10.1007/978-3-319-47578-3_1
https://doi.org/10.1007/978-3-319-47578-3_1
mailto:muhammadfaisal.softech@gmail.com

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 3, No. 4, December 2024: 40-61 61

Umer Khalil is an enthusiastic and adaptive professional with a passion for enhancing his skills

and contributing to innovative projects. With a strong foundation in remote sensing,

geoinformatics (GIS), and civil engineering, Umer specializes in urban systems, geospatial

mapping, and environmental sustainability. Umer is currently working as a GIS engineer in a tech

company. His expertise spans a range of interdisciplinary fields, including urban and regional

planning, smart city development, geospatial data analysis, machine learning applications, hazard

and risk assessment, and addressing wicked problems in environmental and urban contexts. He can

be contacted at email: umerkhalil745@gmail.com

Afia Ishaq is currently working as a Lecturer at Riphah Institute of System Engineering, Riphah

International University Islamabad, Pakistan. She can be contacted at email:

afiaishaq21@gmail.com

	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. METHODOLOGY
	3.1. Dataset Gathering
	3.1.1. Undergraduate Student’s Dataset
	3.1.2. Courses Objective Dataset

	3.2. Aptitude Abilities and Mapping
	3.2.1. Research Focus
	3.2.2. Text Classification Model
	3.2.3. Aptitude Mapping
	3.2.4. Feature Selection

	3.3. Implementation
	3.3.1. Dataset Overview
	3.3.2. Imputation Technique
	3.3.3. Data Preprocessing
	3.3.4. Correlation Analysis
	3.3.5. Implementation Strategy

	3.4. Modeling Using Machine Learning (ML) and Natural Language Processing (NLP)
	3.4.1. KNeighbors Regression (KNR)
	3.4.2. Random Forest Regression (RFR)
	3.4.3. Gradient Boosting Regressor (GBR)
	3.4.4. Light GBM Regressor (LGBMR)
	3.4.5. Aptitude Mapping Using NLP

	4. RESULTS AND DISCUSSION
	4.1. Data Preparation
	4.1.1. Assessment of Missing Data
	4.1.2. Dropping Features
	4.1.3. Identification of Outliers in Data
	4.1.4. Outliers in SSC Obtained Marks
	4.1.5. Outliers in HSSC Obtained Marks
	4.1.6. Handling Outliers in SSC Obtained Marks
	4.1.7. Handling outliers in feature HSSC obtained marks

	4.2. Machine Learning Models for Student Performance Prediction
	4.2.1. Train / Test Split Data Preparation
	4.2.2. KNR Model
	4.2.3. RFR model
	4.2.4. GBR model
	4.2.5. LGBMR model

	4.3. Comparison of ML Models with Evaluation Metrics
	4.4. Evaluating the Effectiveness of Course Predictors

	5. DISCUSSION
	5.1. Key Findings
	5.2. Implications

	6. CONCLUSION
	REFERENCES

