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 The Internet of Things (IoT) creates new options for real-time data collection 

and Machine Learning (ML) model development. Nonetheless, it's feasible 

that a particular IoT device does not have sufficient computational power to 

train and implement a complete learning model. However, there are 

significant communication costs and data security and privacy concerns 

associated with sending actual data to a centralised server with a lot of 

computational power. Federated Learning (FL) is a potential way to train ML 

models using low-powered devices and Edge Servers (ES) since it is a 

distributed ML architecture. However, the vast majority of the works in 

existence make the unsustainable assumption of a synchronized parameters 

update manner with similar IoT nodes and reliable communications networks. 

To increase training efficiency and accelerate the speed for heterogeneous 

IoT devices in an unreliable network environment, we designed an 

Asynchronous Federated Learning strategy with Grey Wolf Optimization 

(AFL-GWO) in this research. In particular, we develop a Lightweight Node 

Selection (LNS) technique and propose an AFL-GWO model to efficiently 

complete learning tasks. To ensure that diverse IoT nodes with varying 

computational capabilities and network connectivity are represented in the 

global learning aggregate, the proposed technique makes node selections on 

an iterative basis. We show through extensive experiments that our suggested 

AFL-GWO system outperforms the state-of-the-art techniques on identically 

and independently distributed (IID) and non-IID data distribution in a variety 

of contexts. 
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1. INTRODUCTION  

The condition is being advanced in a variety of fields, including driverless driving, natural language 

processing, deep packet inspection, phishing mail filtration, banking system research, object tracking, and 

many others, due to ML methods [1]. The ability to gather and use widely dispersed actual information is 

substantially improving as a result of recent IoT advancements. However, it is still often impractical for a 

single IoT device to do the complete ML training phase by itself. Whereas traditional ML techniques call for 

a centralised, computation-intensive training program, data from many IoT devices cannot be transferred to a 

remote cloud server because doing so could cause the network to become overloaded and result in 

unconscionable latency. IoT and ML both face urgent data security issues whose flaws have not yet been 

completely identified and patched [2][3]. Personalized health data, for instance, are crucial for enhancing 

medical diagnoses and forecasting illness risk. This information is very sensitive and intimate and may result 

in catastrophic harm to people if made public. By moving processing workloads from the centralised cloud to 

networking edges, the computation concept may help to reduce capacity problems. It makes it possible for 

IoT devices to use their local data to engage in computational processes. IoT nodes may gather and analyse 

data, connect with these other networks, and enable a range of distributed intelligent systems when seen as a 

system architecture [4]. The systems under investigation in this article are separated into three levels, 
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comprising a distant cloud, a collection of computation offloading nodes, and heterogeneity IoT devices, as 

illustrated in Figure 1. Although the distant cloud has a lot of processing power, it is far from nearby smaller 

stations. In comparison, ES engages with IoT devices at the channel's edge to minimise the cloud's 

computational burden and the delay in the communications of IoT devices [5]. 

 

 

 
 

Figure 1. IoT system design for FL that is enabled by a variety of edges 

 

 

Additionally, ES' computational capabilities may help analyse the data gathered from IoT devices. A 

wide range of approaches have been used to study cloud technology, including simultaneous radio and 

computational distribution of resources, dumping of processing, and management of multi-access edge 

supercomputers [6]. In order to cooperatively train an ML model, FL, as a decentralized education model, 

makes use of local computing resources and data in dispersed devices. Aggregation sites are placed at ES as 

part of the federated education process, interacting with different nodes as localized trainers to train the very 

same ML model utilising location information. The aggregation gathers the weighted inputs from nearby 

students and averages them for each round. Then, using the data set, the aggregators evaluate the learning 

efficiency of the algorithm [7]. We have provided the following contributions to the article to address this 

difficulty. 

• We execute investigations on the MNIST 10-digit dataset and the Fashion-MNIST dataset to verify 

the effectiveness of our technique. 

• We build an Asynchronous Federated Learning - Grey Wolf Optimization ((AFL-GWO) to boost 

training efficiency and speed for heterogeneous IoT devices in an unstable network.  

• We design Lightweight Node Selection (LNS) to efficiently choose nodes. 

The remainder of this article is as follows. Relevant literatures are discussed in Part 2. The proposed 

technique is outlined in Part 3. The efficacy of our approach is examined in Part 4. The study's conclusions is 

presented in Part 5. 

 

2. LITERATURE REVIEW  

A basic analysis of a structure that employs blockchain to manage diverse IoT devices is presented 

in the paper [8]. They begin by highlighting the shortcomings of earlier IoT systems and the challenges 

associated with fusing IoT with blockchain. Then, the authors provide a management architecture for a highly 

heterogeneity IoT system. The management and communication technologies are automatically configured in 
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the study [9] using reward learning models in a dynamic industrial context. In order for supervised learning 

to converge quickly, they produce three public plans on the features of industrial facilities. In order to 

perform extended experiments, they construct and incorporate the reinforcing learning-based founder 

technique on a robust wirelessly cyber-physical simulation.  

The authors of the study [10] concentrate on partly visible data poisoning attacks in crowdsensing 

systems and demonstrate that even when hostile employees only have access to their own information, they 

may still use TruthFinder to develop efficient data poisoning attack tactics. They formalise the issue of partly 

visible data poisoning attacks against crowdsensing platforms first, and then researchers provide a deep 

reinforcement learning-based data poisoning attack technique that enables hostile employees to compromise 

TruthFinder whilst remaining undetected. The study [11] suggests deploying an IoT access platform close to 

the wearable sensors at the network edge. The design may make IoT applications faster and more reactive 

and effectively safeguard sensitive data from prying eyes. In order to provide IoT with cloud-based 

applications with a uniform picture of heterogeneous wearable sensors, they suggest a generic ontology-

based object-relational paradigm of IoT devices. To increase the effectiveness of dispersed education, an 

outstanding FL strategy for the heterogeneity IoT-edge FL system is put forward in the article [12]. To 

address the problem of poor training effectiveness brought on by the diversity of clients, they first investigate 

an Iterative Self Organizing Data Analysis Techniques Algorithm (ISODATA)-based server and client 

schedule method.  

In the article [13], they investigate and design the Resource Provisioning and Workload Assignment 

((RPWA) for IoT services problem as a mixed integer algorithm to jointly choose the quantity and position of 

ES and apps to deploy, in addition to the teaching load allocation. Given its difficulty, they suggest a 

deconstruction strategy to address it, which divides RPWA into two sub-problems: the products can lead to 

the mobility network edge and the delayed aware workload allocation sub-problem. They provide a unique 

Plug-and-Play (PnP) solution for the aforementioned issue in the article [14]. SensPnP, the suggested PnP 

solution, is a set of integrated software and hardware that can connect third-party embedded sensors to IoT 

devices without any previous knowledge of the sensors or the Internet. They outline an IoT device 

architecture that supports several integrated peripherals communication systems and is PnP-enabled. Cross-

technology communication (CTC) approaches may be broadly categorized into two types: equipment-

dependent and hardware-free.  

The research [15] aims to give a comprehensive state-of-the-art review of CTC from the hardware 

viewpoint. In hardware-based solutions, specialised hardware is needed to convey information to wireless 

devices to allow direct connection. On the contrary, hardware-free approaches allow heterogeneity-connected 

technologies to interact directly by sharing information and data without the need for special hardware. To 

allow blockchain in IoT, they describe Tornado in the paper [16], a slightly elevated blockchain system built 

on a spatial register and related algorithms. A unique consensus technique called cooperative work is 

designed to handle the massive heterogeneity of IoT. To increase the resource productivity of IoT devices, 

they also suggest the Space-structured Greedy Heaviest-Observed Subtree (S^2GHOST) method. A Proof of 

Concept (PoC) in a fictitious Software-Defined Networks (SDN) environment is shown in the paper [17] 

using the mathematical model. The suggested architecture greatly reduces variability, which aids in 

maintaining Quality-of-Service (QoS) and enhancing security, according to performance assessment findings.  

In the paper [18], they investigate the issue of job rescheduling onto such a heterogeneity Multi 

Processor System on a Chip (MPSoC) deployed in the IoT for maximising security quality while taking into 

account limits on fuel, authenticity, and project priority. In order to maximise the security system, they first 

provide a Mixed Integer Linear Programming (MILP) framework for assigning and scheduling dependent 

activities with energy and real-time restrictions on a heterogeneity MPSoC system. In order to determine the 

real-time resemblance of continuous monitoring of the microtubules aspect of the machines, the paper [19] 

presents a Heterogeneity Industrial Internet of Things (HetIoT) architecture. This idea is supposed to be 

shown by the examination of equipment usefulness, economy, productivity, and so forth. The suggested 

Advanced Machine-metameric Dimension (AmD) with HetIoT has achieved greater clarity, F1 measure, 

recollection, and accuracy. Researchers have created and built middleware based on a service-oriented 

architecture that can handle heterogeneous difficulties in the work [20]. The solution was created in three 

stages, beginning with the use of REST API to gather data from a variety of heterogeneity sensor devices, 

followed by the introduction of heterogeneity connectivity protocols, and lastly, middleware testing on 

gateways running various operating systems. 

 

3. METHOD 

In this paper, we propose an AFL-GWO approach, where a collection of IoT devices train a model 

using only the data collected at the edge. To boost the convergence of the learning process, the suggested 

asynchronous node selection scheme takes benefit of the current state of network and computing interaction. 

Figure 2 depicts the overview of suggested method. 
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Figure 2. Overview of the suggested method 

3.1. Data pre-processing 

The gathered data is pre-processed using Z-score normalization. Z-score normalisation analysis of 

raw data uses its mean and standard deviation to get a normalised score. Equation (1) demonstrates that the z-

score variable may be used to standardise the unstructured data. 

 

𝐼𝑛
′ =

𝐼𝑛−�̅�

𝑠𝑡𝑑(𝐷)
                      (1)  

 

Where, 

𝐼𝑛
′  Shows the standardised Z-score values 

Z-scores have been normalised and shown in 𝐼𝑛
′ . 

𝐼𝑛 Identifies row D of the lth column where the value occurs. 

 

𝑠𝑡𝑑(𝐷) = √
1

(𝑂−1)
∑ (𝐼𝑛 − �̅�)2𝑛

𝑛=1                     (2) 

 

�̅� =
1

𝑛
∑ 𝐼𝑛

𝑛
𝑛=1  or mean value                    (3) 

 

Each row may make use of the Z-score method since all the values are the same, yielding a standard 

deviation of 0 when the values are all set to 0 to produce standard data. Similar to Min-Max normalisation, 

the z-score may be used to establish a scale from 0 to 1. 

3.2. Conceptual framework 

This section provides a comprehensive overview of our methodology. In particular, we begin with 

an overview of the structure and our explanation for the structure. Following this, we present our AFL-GWO 

proposal. Finally, we detail the asynchronous technique we've suggested for selecting nodes for dispersed 

computing in an IoT system.  

3.3. Problem domain and architecture explanation 

The ML industry may face a number of difficulties, including those related to decentralised and 

centralised ML, as shown in Figure 3. The problems and demands for IoT systems cannot be met by 
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conventional ML approaches, which collect all training data at a centralised server with considerable 

computational power. We believe that FL offers a potential way to connect ML with IoT systems. To begin 

with, IoT devices might gather data samples and run the training process locally. Second, the public learner 

may save their information publically to lessen security risks and conserve expensive wireless bandwidth. 

The network structure of IoT systems and the FL framework are also quite similar.  

 

 
 

Figure 3. Challenges in the ML sector 

 

As can be seen in Figure 3, the FL system is implemented on edge computing nodes linked by an 

IoT network. In this scenario, several IoT devices work together to train a single learning model, with the 

edge node serving as the centralised parameter server (or aggregator). While most data samples may not 

adhere to the IID, IoT devices may still collect original data from their environment of usage. A distributed 

learning system, FL makes use of distributed computational capabilities across several nodes. Heterogeneity 

nodes can all train identical ML model using their own data. Still, the vast majority of current FL initiatives 

assume a homogenous system where every node has identical processing power, trains synchronously, and 

has stable connectivity. Despite this, synchronous learning is inefficient in the real world since IoT devices 

are heterogeneity. Waiting for the weakest nodes to update their weight vector (WV) is an inefficient use of 

time due to the varied computational power and dynamic connectivity circumstances of IoT devices. To solve 

this problem, we develop an AFL-GWO model, where computational resources are collected, and nodes are 

dynamically chosen for global aggregation in order to boost the performance of the designated learning task. 

3.4. FL model 

The scenario under study in FL consists of several aggregators and IoT devices. These nodes in 

training are all responsible for training the same ML model. The paper's most important notations are 

tabulated in Table 1. 

 

Table 1. Description of notation 

Notations Description 

𝑴 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑣𝑖𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

𝑱 𝑇ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 

𝑼 𝑇ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙 

𝑳() 𝑇ℎ𝑒 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝓣𝒎 𝑇ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑜𝑛 𝑛𝑜𝑑𝑒 𝑚 

𝑻𝒎 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑛 𝑛𝑜𝑑𝑒 𝑚 

𝑩 𝑇ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 

𝑫 𝑇ℎ𝑒 𝑙𝑜𝑐𝑎𝑙 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 

𝝀𝒎 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑐𝑎𝑙 𝑢𝑝𝑑𝑎𝑡𝑒s 𝑜𝑛 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒 𝑚 

𝒃𝒎 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑜𝑛 𝑛𝑜𝑑𝑒 𝑚 
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We refer to IoT nodes in the set 𝐽 = {1,2, … . , 𝑚, … . . , 𝑀} and𝑇𝑚 = {𝑑1, 𝑑2, … 𝑑𝑖 , … . 𝑑𝑇𝑚
as the data 

source on particular node 𝑚, where 𝑇𝑚indicates the total response rate among all local dataset 𝑇𝑚`. The initial 

goal was FL to find a WV  𝑈𝑆 ∈ 𝔎𝑟  that minimises wide loss function 𝐿𝑆()  across the training session. Here, 

𝑟 indicates the dimensions the W . FL presents a learning challenge that may be expressed as 

 

𝑈𝑆
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐿𝑆(𝑈𝑆)                     (4) 

 

The creation of a local update is then described. To be more accurate, during each iteration, a certain 

number of IoT networks are selected to participate in the globe aggregate. The local loss function Lm()   is 

minimised across each node's individual dataset Tm by training the obtained global WV  US
d−1 with 

Amepochs. At the conclusion of the iteration, every node has a local WV US
d. The local update δm

d  is then 

calculated locally and transmitted back to the central parameter server as follows: 

 

𝛿𝑚
𝑑 = 𝑈𝑚

𝑑 − 𝑈𝑆
𝑑−1                     (5) 

 

All obtained local updates are aggregated using the weight-averaging approach on the centralized 

parameter server, which is stated as follows: 

 

𝑈𝑆
𝑑 = 𝑈𝑆

𝑑−1 + ∑
𝑇𝑚

𝑇
𝑏𝑑

𝑏𝑑

𝑚=1 𝛿𝑚
𝑑                      (6) 

 

It should be noted that Bd  (Bd  ⊆ J is a group of node that shows the nodes with adaptively 

contribute to the total aggregated during round d. The case of synchronous updating is covered by the stated 

issue (Equations (4)–(6)). The updating process is synchronous, that is, Bd  = J, while every node inside the 

collection of nodes is J become a part of the global aggregate. 

The issue of accurately calculating the amount of time and space required for FL activities remains 

unsettled. Computing expenses during training is thus an important topic to cover initially. We assume the 

ML model's computational complexity is constant across all iterations.  

The compute contribution 𝜆𝑚on to the ML task for a given number of local updates 𝐴𝑚 is thought to 

be linked to the minibatch size employed in those updates. It is anticipated that the parameters servers (i.e., 

aggregator) will set and maintain the same minibatch size (hyperparameter) throughout the FL process. By 

multiplying 𝐴𝑚
𝑑  (the total number of updates) by 𝑡𝑔 (the minibatch size), we can calculate 𝜆𝑚

𝑑 . Then, we have 

 

𝜆𝑚
𝑑 = 𝐴𝑚

𝑑∗𝑡𝑔                      (7)

      

For the learning task, it is important to note that the size of the mini-batch is determined 

empirically. 𝑁𝐷 = {𝜆1, 𝜆2, … , 𝜆𝑛, … , 𝜆𝑀} is the collection of local computing contributions across the FL 

process. Furthermore, we think of the set MT as an accumulation. If node m was chosen to take part in the 

last global aggregate, its value of 𝜆𝑚 will be reset to 0. For this purpose, we have 

 

𝜆𝑚 = {
𝜆𝑚 + 𝜆𝑚

𝑑 , 𝐺𝑚
𝑑 = 1

0,                𝐺𝑚
𝑑 = 0

                      (8) 

 

Where 𝐺𝑚
𝑑 = 1 if node m is included in the global aggregate and  𝐺𝑚

𝑑 = 0 otherwise. The speed of 

WV transfer among nodes and the aggregators serves as a representation of the connectivity costs for 

aggregating at each round, i.e., 𝑃 = {𝑝1
𝑑 , 𝑝2

𝑑 , … . 𝑝𝑚
𝑑 , … . 𝑝𝑀

𝑑 }. This allows us to simulate the flexible 

communications system in the IoT context. 

3.5. AFL scheme 

The AFL system, which comprises the following three phases, is fully detailed. In step 1, the 

initialization process takes place. After the initialization aggregation process takes place in step 2, the 

parameters are updated. 

 

Step 1: The server, sometimes referred to as the parameter aggregator, creates the random initial parameter 

vector 𝑈𝑖𝑛𝑖𝑡𝑖𝑎𝑙  and the global ML model. It creates node set J. After that, the aggregators deliver the original 

WV   𝑈𝑖𝑛𝑖𝑡𝑖𝑎𝑙  to node set J. 

Step 2: The ACK frame that each node in set J provides to the aggregators includes an evaluation of the 

current computational contribution (𝜆𝑚) and communications status (𝑝𝑀
𝑑 ). Then, a suggested node selection 
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technique is shown in the section that follows. It uses the weight averaging approach to choose nodes for set 

𝐵𝑑  to obtain the global aggregate at each iteration 𝑑. 

3.6. Node selection 

We construct a step 2-based algorithm to choose which nodes should take part in the aggregate at 

the specified time. 𝐷𝑡𝑓, where 𝐷𝑡𝑓 is a set period of time utilised to gather node update data. To enhance the 

performance of the ML task, the suggested method seeks to collect as much computational contribution as 

possible with the available communication time (𝐷𝑡𝑓). Consequently, the formulation of the node selection 

issue at iteration t is 

 
𝑚𝑎𝑥

𝐺𝑚
𝑑 , 𝑚 ∈ 𝐽 ∑ 𝜆𝑚

𝑀
𝑚=1 𝐺𝑚

𝑑                       (9) 

 

𝑠. 𝑡 {
∑ 𝑘𝑚

𝑑 𝐺𝑚
𝑑 ≤ 𝐷𝑡𝑓 ,𝑀

𝑚=1 (𝑚 = 1,2, … , 𝑀)

𝐺𝑚
𝑑 ∈ {0,1},        (𝑚 = 1,2, … , 𝑀)

                  (10) 

 

Due to the diversity of IoT devices, we calculate the transmission time𝑘𝑚
𝑑 =

𝐽

𝑝𝑚
𝑑 , where 𝑓 represents 

the packet size of the WV, based on the communication conditions in set B. 

The 0 − 1 𝐾𝑛𝑎𝑝𝑠𝑎𝑐𝑘 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 represented by equations (9) and (10) is well-known. The suggested 

method must handle a high-density (IoT) ecosystem. A heuristic algorithm built on the greedy approach is 

developed to estimate the solution to the 0 − 1 𝐾𝑛𝑎𝑝𝑠𝑎𝑐𝑘 𝑝𝑟𝑜𝑏𝑙𝑒𝑚, finding a compromise between the ideal 

answer and the efficiency of the operations.  

 

Algorithm 1. The aggregate node classification approach (in stage 2) 

Initialize: 𝐵𝑑 = {}, 𝑂 − {}, 𝐽𝑑 = 𝐽, 𝑛 = 0, 𝐷𝑡𝑓 , 𝑁𝐷 , 𝐷; 

Verify the most recent communication situation 𝑃; 

Evaluate the efficiency of the contributions calculation 𝑜𝑛
𝑑 = 𝜆𝑚 ∗ 𝑝𝑚

𝑑 ; 
  𝐷𝑡𝑓

𝑑 = 𝐷𝑡𝑓; 

while 𝐽𝑑 ≠ {∅} do 

              arg max(𝑂) ∀𝑚 ∈ 𝐽𝑑; 
 𝑛 = 𝐽𝑚

𝑑 ; 
 Remove∈ 𝐽𝑚

𝑑 from 𝐽𝑑; 
 if 𝑘𝑚

𝑑 ≤ 𝐷𝑡𝑓
𝑑  then 

  𝐷𝑡𝑓
𝑑 = 𝐷𝑡𝑓

𝑑 − 𝑘𝑚
𝑑 ; 

  𝐵𝑑 = 𝐵𝑑 ∪ 𝑛 

 End while; 

 

To accelerate the training speed for heterogeneity IoT devices in an unreliable network environment, 

we use GWO. 

The GWO is a new optimization method with biological underpinnings. The GWO approach uses a 

group of search agents to identify the optimal answer to a problem. The GWO algorithm stands out from the 

crowd because of the social dominance hierarchy that generates the candidate solution at every optimization 

iteration. The hunting mechanism consists of three stages: monitoring, approaching, and striking the prey. To 

solve difficult optimization issues, grey wolves employ a mathematical hunting strategy known as GWO. As 

a consequence, a victim is thought to be the greatest way to solve an issue. 

According to the following formula, the victim is being surrounded by GW when they perform the 

three higher level movements. 

 

�⃗� = 𝐹 ⃗⃗⃗⃗ . 𝐴𝑠(𝑤)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ − 𝐴(𝑤)                                  (11) 

 

The vector 𝐴𝑠 denotes where the prey is located, the vector A denotes where the GW is, and the 

vector F denotes the coefficient. The following equation is employed to relocate a given element closer to or 

farther from the region containing the ideal solution (representing the prey). 

 

𝐴(𝑣 + 1) =⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |𝐴𝑡(𝑣) − 𝑒. 𝑓
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

| , 𝑤𝑖𝑡ℎ 𝑒 = 2𝑒.⃗⃗⃗ 𝑛1 − 𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗                               (12) 
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Where 𝑛1 is randomly selected from the range [0, 1] and 𝑎𝑛 is decreased from 2 to 0 over a 

predetermined number of iterations. When|𝐷| exceeds 1, this mimics prey attack behaviour and is consistent 

with exploitation behaviour. When |𝐷| >  1, the wolf's distance from the victim is copied. The suggested 

range for C is [-2, 2]. Three higher levels, 𝑐, 𝑑, 𝑎𝑛𝑑 𝑒, will be calculated using the mathematical formulas 

below. 

 

𝐺𝑐
⃗⃗⃗⃗⃗ = |𝐹1

⃗⃗ ⃗⃗ . 𝐴𝑐
⃗⃗⃗⃗⃗ − 𝐴|𝑤𝑖𝑡ℎ 𝐴1

⃗⃗⃗⃗⃗ = 𝐴𝑐
⃗⃗⃗⃗⃗ − 𝐴𝑐

⃗⃗⃗⃗⃗. (�⃗�𝑐)                                          (13) 

 

𝐺𝑑
⃗⃗ ⃗⃗ ⃗ = |𝐹2

⃗⃗ ⃗⃗ . 𝐴𝑐
⃗⃗⃗⃗⃗ − 𝐴|𝑤𝑖𝑡ℎ 𝐴2

⃗⃗ ⃗⃗⃗ = 𝐴𝑑
⃗⃗ ⃗⃗ ⃗ − 𝐴𝑑

⃗⃗ ⃗⃗ ⃗. (𝐺𝑑
⃗⃗ ⃗⃗ ⃗).                                      (14) 

     

𝐺𝑒
⃗⃗⃗⃗⃗ = |𝐹3

⃗⃗ ⃗⃗ . 𝐴𝑐
⃗⃗⃗⃗⃗ − 𝐴|𝑤𝑖𝑡ℎ 𝐴3

⃗⃗ ⃗⃗⃗ = 𝐴𝑒
⃗⃗ ⃗⃗ ⃗ − 𝐴𝑒

⃗⃗ ⃗⃗ ⃗. (𝐺𝑒
⃗⃗⃗⃗⃗)                                (15) 

 

Consider that b, c, and d have enough knowledge about the victim's expected location to statistically 

recreate the grey wolf's hunting strategy. Additionally, the top 3 solutions are kept, which forces the 

remaining agents to adjust their values to match those of the top 3 agents, b, c, and d.   

For the purposes of argument, let's say that c, d, and e have enough intelligence to mathematically 

replicate the grey wolf's hunting technique. And the top three solutions are kept, so the other agents have to 

adjust their locations to match those of c, d, and e. 

 

𝐴(𝑤 + 1) =
𝑎1+⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑎2⃗⃗⃗⃗⃗⃗ +𝑎3⃗⃗⃗⃗⃗⃗

3
                                  (16) 

 

4. RESULTS AND DISCUSSION 

Using the “MNIST 10-digit and Fashion-MNIST” datasets, we conduct tests to verify the 

effectiveness of our proposed AFL-GWO. We compare our proposed method to a few modern techniques, 

such as Synchronous Federated Learning (SFL) [21] and Random Nodes Selection Federated Learning 

(RNS-FL) [22]. As we compare the two state-of-the-art methods in various contexts, we first outline the 

assessment approach before presenting the evaluation findings. 

4.1. Accuracy 

We compare the accuracy performance across the various strategies in Figure 4(a)(b). Accuracy 

rises as the number of nodes grows, and our suggested asynchronous strategy achieves the requisite accuracy 

more quickly (i.e., with less training time). This is due to the fact that the suggested node selection technique 

may optimally choose the IoT nodes with enough computational power in each cycle. 

 

 
Figure 4(a). Accuracy for MNIST 10-digit 
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Figure 4(b). Accuracy for Fashion-MNIST 

4.2. Computing Time 

The amount of time needed to complete a computing operation is known as computation time. When 

a calculation is represented as a series of rule deployments, the computation time is inversely correlated with 

the quantity of rule implementations. The computation durations for our technique and other techniques are 

shown in Figure 5. It demonstrates that AFL-GWO requires less processing time than other approaches. 

 

 
 

Figure 5. Comparison of computing time 

4.3. Security Level 

Security is a technique that protects IoT devices that are linked over a network by using protection 

mechanisms while also limiting cyber threats. The security level of our technique and other techniques is 

shown in Figure 6. It is evident that AFL-GWO exhibits a high level of security when compared to other 

strategies. 
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Figure 6. Comparison of security level 

 

5. CONCLUSION 

In this research, we have discussed the difficulties in implementing IoT systems driven by the edge 

spread over dynamic communications infrastructure. We've designed an Asynchronous Federated Learning 

with Grey Wolf Optimization (AFL-GWO) that can function well with various IoT devices. We have 

suggested a Lightweight Node Selection (LNS) approach to provide a rough answer with minimal computing 

cost for adaptively deciding which nodes participate every time there is a global aggregate. We have tested 

the effectiveness of the suggested scheme by a number of quantitative tests on big datasets, and we have 

furthermore verified clearly the two conventional state-of-the-art systems are not as effective as our 

suggested solution, taking into account both IID and Non-IID data types. 

In the future, we will address a number of techniques for federated training communications 

reduction, including model compression and local updating. It's critical to comprehend how these methods 

interact each other and to rigorously examine how each method trades off communication for accuracy. The 

most effective strategies will, in particular, show advances at the Pareto frontier, reaching an accuracy larger 

than any other strategy while spending the same amount on communications, and, ideally, over a broad 

variety of interaction characteristics. 
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